6 research outputs found

    Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824

    Get PDF
    BackgroundClostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sought to test their suitability for use in C. acetobutylicum.ResultsBoth systems readily allowed the isolation of in-frame deletions of the C. acetobutylicum ATCC 824 spo0A and the cac824I genes, leading to a sporulation minus phenotype and improved transformation, respectively. The pyrE-based system was additionally used to inactivate a putative glycogen synthase (CA_C2239, glgA) and the pSOL1 amylase gene (CA_P0168, amyP), leading to lack of production of granulose and amylase, respectively. Their isolation provided the opportunity to make use of one of the key pyrE system advantages, the ability to rapidly complement mutations at appropriate gene dosages in the genome. In both cases, their phenotypes were restored in terms of production of granulose (glgA) and amylase (amyP). Genome re-sequencing of the ATCC 824 COSMIC consortium laboratory strain used revealed the presence of 177 SNVs and 49 Indels, including a 4916-bp deletion in the pSOL1 megaplasmid. A total of 175 SNVs and 48 Indels were subsequently shown to be present in an 824 strain re-acquired (Nov 2011) from the ATCC and are, therefore, most likely errors in the published genome sequence, NC_003030 (chromosome) and NC_001988 (pSOL1).ConclusionsThe codA or pyrE counter selection markers appear equally effective in isolating deletion mutants, but there is considerable merit in using a pyrE mutant as the host as, through the use of ACE (Allele-Coupled Exchange) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high copy number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention. Our study also revealed a surprising number of errors in the ATCC 824 genome sequence, while at the same time emphasising the need to re-sequence commonly used laboratory strains

    Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production

    Get PDF
    In microorganisms, the enzyme acetate kinase (AK) catalyses the formation of ATP from ADP by de-phosphorylation of acetyl phosphate into acetic acid. A mutant strain of Clostridium acetobutylicum lacking acetate kinase activity is expected to have reduced acetate and acetone production compared to the wild type. In this work, a C. acetobutylicum mutant strain with a selectively disrupted ack gene, encoding AK, was constructed and genetically and physiologically characterized. The ack− strain showed a reduction in acetate kinase activity of more than 97% compared to the wild type. The fermentation profiles of the ack− and wild-type strain were compared using two different fermentation media, CGM and CM1. The latter contains acetate and has a higher iron and magnesium content than CGM. In general, fermentations by the mutant strain showed a clear shift in the timing of peak acetate production relative to butyrate and had increased acid uptake after the onset of solvent formation. Specifically, in acetate containing CM1 medium, acetate production was reduced by more than 80% compared to the wild type under the same conditions, but both strains produced similar final amounts of solvents. Fermentations in CGM showed similar peak acetate and butyrate levels, but increased acetoin (60%), ethanol (63%) and butanol (16%) production and reduced lactate (−50%) formation by the mutant compared to the wild type. These findings are in agreement with the proposed regulatory function of butyryl phosphate as opposed to acetyl phosphate in the metabolic switch of solventogenic clostridia

    Simultaneous production of isopropanol, butanol, ethanol and 2,3-butanediol by Clostridium acetobutylicum ATCC 824 engineered strains

    Get PDF
    Isopropanol represents a widely-used commercial alcohol which is currently produced from petroleum. In nature, isopropanol is excreted by some strains of Clostridium beijerinckii, simultaneously with butanol and ethanol during the isopropanol butanol ethanol (IBE) fermentation. In order to increase isopropanol production, the gene encoding the secondary-alcohol dehydrogenase enzyme from C. beijerinckii NRRL B593 (adh) which catalyzes the reduction of acetone to isopropanol, was cloned into the acetone, butanol and ethanol (ABE)-producing strain C. acetobutylicum ATCC 824. The transformants showed high capacity for conversion of acetone into isopropanol (> 95%). To increase isopropanol production levels in ATCC 824, polycistronic transcription units containing, in addition to the adh gene, homologous genes of the acetoacetate decarboxylase (adc), and/or the acetoacetyl-CoA:acetate/butyrate:CoA transferase subunits A and B (ctfA and ctfB) were constructed and introduced into the wild-type strain. Combined overexpression of the ctfA and ctfB genes resulted in enhanced solvent production. In non-pH-controlled batch cultures, the total solvents excreted by the transformant overexpressing the adh, ctfA, ctfB and adc genes were 24.4 g/L IBE (including 8.8 g/L isopropanol), while the control strain harbouring an empty plasmid produced only 20.2 g/L ABE (including 7.6 g/L acetone). The overexpression of the adc gene had limited effect on IBE production. Interestingly, all transformants with the adh gene converted acetoin (a minor fermentation product) into 2,3-butanediol, highlighting the wide metabolic versatility of solvent-producing Clostridi

    d-2,3-Butanediol Production Due to Heterologous Expression of an Acetoin Reductase in Clostridium acetobutylicum ▿ †

    No full text
    Acetoin reductase (ACR) catalyzes the conversion of acetoin to 2,3-butanediol. Under certain conditions, Clostridium acetobutylicum ATCC 824 (and strains derived from it) generates both d- and l-stereoisomers of acetoin, but because of the absence of an ACR enzyme, it does not produce 2,3-butanediol. A gene encoding ACR from Clostridium beijerinckii NCIMB 8052 was functionally expressed in C. acetobutylicum under the control of two strong promoters, the constitutive thl promoter and the late exponential adc promoter. Both ACR-overproducing strains were grown in batch cultures, during which 89 to 90% of the natively produced acetoin was converted to 20 to 22 mM d-2,3-butanediol. The addition of a racemic mixture of acetoin led to the production of both d-2,3-butanediol and meso-2,3-butanediol. A metabolic network that is in agreement with the experimental data is proposed. Native 2,3-butanediol production is a first step toward a potential homofermentative 2-butanol-producing strain of C. acetobutylicum
    corecore