38 research outputs found

    Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer

    No full text
    Abstract Clinical studies in breast cancer suggest important associations between intratumoral hypoxia, the upregulation of epidermal growth factor receptor (EGFR or HER1), hypoxia-inducible factor 1α (HIF-1α), and reduced patient survival. However, direct molecular links between EGFR and the hypoxia signaling system are not yet established. Since the oxygen sensor hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is considered to be the main HIF-1α regulator, we hypothesized that PHD2 and EGFR may be interconnected at the molecular level. By analyzing samples from 313 breast cancer patients, we found that EGFR is a first clinicopathological parameter positively correlating with PHD2. Mechanistically, we identified PHD2 as a direct binding partner of EGFR and show that PHD2 regulates EGFR stability as well as its subsequent signaling in breast carcinoma cells. Overall, we introduce for the first time the direct crosstalk between the oxygen sensor PHD2 and EGFR-mediated tumorigenesis in breast cancer

    Hypoxia-stimulated membrane trafficking requires T-Plastin

    No full text
    Aim Traffic between the plasma membrane and the endomembrane compartments is an essential feature of eukaryotic cells. The secretory pathway sends cargoes from biosynthetic compartments to the plasma membrane. This is counterbalanced by a retrograde endocytic route and is essential for cell homoeostasis. Cells need to adapt rapidly to environmental challenges such as the reduction of pO2 which, however, has not been analysed in relation to membrane trafficking in detail. Therefore, we determined changes in the plasma membrane trafficking in normoxia, hypoxia, and after reoxygenation. Methods Membrane trafficking was analysed by using the bulk membrane endocytosis marker FM 1-43, the newly developed membrane probe mCLING, wheat germ agglutinin as well as fluorescently labelled cholera toxin subunit B. Additionally, the uptake of specific membrane proteins was determined. In parallel, a non-biased SILAC screen was performed to analyse the abundance of membrane proteins in normoxia and hypoxia. Results Membrane trafficking was increased in hypoxia and quickly reversed upon reoxygenation. This effect was independent of the hypoxia-inducible factor (HIF) system. Using SILAC technology, we identified that the actin-bundling protein T-plastin is recruited to the plasma membrane in hypoxia. By the use of T-plastin knockdown cells, we could show that T-plastin mediates the hypoxia-induced membrane trafficking, which was associated with an increased actin density in the cells as determined by electron microscopy. Conclusion Membrane trafficking is highly dynamic upon hypoxia. This phenotype is quickly reversible upon reoxygenation, which suggests that this mechanism participates in the cellular adaptation to hypoxia
    corecore