32 research outputs found

    Initial characteristics of RbcX proteins from Arabidopsis thaliana

    Get PDF
    Form I of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is composed of eight large (RbcL) and eight small (RbcS) subunits. Assembly of these subunits into a functional holoenzyme requires the assistance of additional assembly factors. One such factor is RbcX, which has been demonstrated to act as a chaperone in the assembly of most cyanobacterial Rubisco complexes expressed in heterologous system established in Escherichia coli cells. Analysis of Arabidopsis thaliana genomic sequence revealed the presence of two genes encoding putative homologues of cyanobacterial RbcX protein: AtRbcX1 (At4G04330) and AtRbcX2 (At5G19855). In general, both RbcX homologues seem to have the same function which is chaperone activity during Rubisco biogenesis. However, detailed analysis revealed slight differences between them. AtRbcX2 is localized in the stromal fraction of chloroplasts whereas AtRbcX1 was found in the insoluble fraction corresponding with thylakoid membranes. Search for putative “partners” using mass spectrometry analysis suggested that apart from binding to RbcL, AtRbcX1 may also interact with ÎČ subunit of chloroplast ATP synthase. Quantitative RT-PCR analysis of AtRbcX1 and AtRbcX2 expression under various stress conditions indicated that AtRbcX2 is transcribed at a relatively stable level, while the transcription level of AtRbcX1 varies significantly. In addition, we present the attempts to elucidate the secondary structure of AtRbcX proteins using CD spectroscopy. Presented results are the first known approach to elucidate the role of RbcX proteins in Rubisco assembly in higher plants

    Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity.</p> <p>Results</p> <p>We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants.</p> <p>Conclusion</p> <p>Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.</p

    Reference genes for gene expression studies in wheat flag leaves grown under different farming conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Internal control genes with highly uniform expression throughout the experimental conditions are required for accurate gene expression analysis as no universal reference genes exists. In this study, the expression stability of 24 candidate genes from <it>Triticum aestivum </it>cv. Cubus flag leaves grown under organic and conventional farming systems was evaluated in two locations in order to select suitable genes that can be used for normalization of real-time quantitative reverse-transcription PCR (RT-qPCR) reactions. The genes were selected among the most common used reference genes as well as genes encoding proteins involved in several metabolic pathways.</p> <p>Findings</p> <p>Individual genes displayed different expression rates across all samples assayed. Applying geNorm, a set of three potential reference genes were suitable for normalization of RT-qPCR reactions in winter wheat flag leaves cv. Cubus: <it>TaFNRII </it>(ferredoxin-NADP(H) oxidoreductase; AJ457980.1), <it>ACT2 </it>(actin 2; TC234027), and <it>rrn26 </it>(a putative homologue to RNA 26S gene; AL827977.1). In addition of these three genes that were also top-ranked by NormFinder, two extra genes: <it>CYP18-2 </it>(Cyclophilin A, AY456122.1) and <it>TaWIN1 </it>(14-3-3 like protein, AB042193) were most consistently stably expressed.</p> <p>Furthermore, we showed that <it>TaFNRII, ACT2</it>, and <it>CYP18-2 </it>are suitable for gene expression normalization in other two winter wheat varieties (Tommi and Centenaire) grown under three treatments (organic, conventional and no nitrogen) and a different environment than the one tested with cv. Cubus.</p> <p>Conclusions</p> <p>This study provides a new set of reference genes which should improve the accuracy of gene expression analyses when using wheat flag leaves as those related to the improvement of nitrogen use efficiency for cereal production.</p

    The state of oligomerization of Rubisco controls the rate of synthesis of the Rubisco large subunit in <em>Chlamydomonas reinhardtii</em>.

    No full text
    Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in all photosynthetic organisms and is a key enzyme for photosynthesis-driven life on Earth. Its most prominent form is a hetero-oligomer in which small subunits (SSU) stabilize the core of the enzyme built from large subunits (LSU), yielding, after a chaperone-Assisted multistep assembly process, an LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii and a combination of site-directed mutants to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU are associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis, in which LSU translation is controlled by its ability to assemble with the SSU, via the mechanism of control by epistasy of synthesis (CES). Altogether this leads us to propose a model whereby the last assembly intermediate, an LSU8-RAF1 complex, provides the platform for SSU binding to form the Rubisco enzyme, and when SSU is not available, converts to a key regulatory form that exerts negative feedback on the initiation of LSU translation

    MDA

    No full text

    Arabidopsis mutants impaired in cosuppression.

    No full text
    Post-transcriptional gene silencing (cosuppression) results in the degradation of RNA after transcription. A transgenic Arabidopsis line showing post-transcriptional silencing of a 35S-uidA transgene and uidA-specific methylation was mutagenized using ethyl methanesulfonate. Six independent plants were isolated in which uidA mRNA accumulation and beta-glucuronidase activity were increased up to 3500-fold, whereas the transcription rate of the 35S-uidA transgene was increased only up to threefold. These plants each carried a recessive monogenic mutation that is responsible for the release of silencing. These mutations defined two genetic loci, called sgs1 and sgs2 (for suppressor of gene silencing). Transgene methylation was distinctly modified in sgs1 and sgs2 mutants. However, methylation of centromeric repeats was not affected, indicating that sgs mutants differ from ddm (for decrease in DNA methylation) and som (for somniferous) mutants. Indeed, unlike ddm and som mutations, sgs mutations were not able to release transcriptional silencing of a 35S-hpt transgene. Conversely, both sgs1 and sgs2 mutations were able to release cosuppression of host Nia genes and 35S-Nia2 transgenes. These results therefore indicate that sgs mutations act in trans to impede specifically transgene-induced post-transcriptional gene silencing
    corecore