57 research outputs found

    Transcriptional Activity of the Islet β Cell Factor Pdx1 is Augmented by Lysine Methylation Catalyzed by the Methyltransferase Set7/9

    Get PDF
    The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (SetΔβ). SetΔβ mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function

    The biguanide polyamine analog verlindamycin promotes differentiation in neuroblastoma via induction of antizyme

    Get PDF
    Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressor—antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.Output Status: Forthcoming/Available Onlin

    Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents: Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins

    Get PDF
    Grapefruit juice increases the oral availability of a variety of CYP3A4 substrates. It has been shown that recurrent grapefruit juice ingestion results in a loss of CYP3A4 from the small bowel epithelium. We now show that the reduction in intestinal CYP3A4 concentration is rapid; a 47% decrease occurred in a healthy volunteer within 4 hr after consuming grapefruit juice. To identify the specific components of the juice responsible for this effect, we used a recently developed Caco-2 cell culture model of human intestinal epithelium that expresses catalytically active CYP3A4. We found that grapefruit oil and two furanocoumarin constituents (6*,7*-dihydroxybergamottin and a closely related dimer) caused a dose-dependent fall in CYP3A4 catalytic activity and immunoreactive CYP3A4 concentration. The effect was selective in that concentrations of CYP1A1 and CYP2D6 did not fall, consistent with previous results obtained in vivo. Assays of various juices confirmed that 6*,7*-dihydroxybergamottin is the major furanocoumarin present and, although its concentration varies significantly among types and brands of grapefruit juice, it is consistently present in concentrations exceeding the IC50 (1 mM) for loss of midazolam 1*-hydroxylase activity determined in the Caco-2 cells. Studies with recombinant CYP3A4 revealed that 6*,7*-dihydroxybergamottin is a mechanism-based inactivator, which supports the idea that loss of CYP3A4 results from accelerated degradation of the enzyme. We conclude that the effect of grapefruit juice on oral availability of CYP3A4 substrates can be largely accounted for by the presence of 6*,7*-dihydroxybergamottin although other furanocoumarins probably also contribute

    New transmission-selective antimalarial agents through hit-to-lead optimization of 2-([1,1 '-Biphenyl]-4-carboxamido)benzoic acid derivatives

    Get PDF
    Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block humanto- mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1’- biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido) benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.South African National Research Foundation; BMGF Grand Challenges Africa; South African Medical Research Council (SA MRC); South Carolina SmartState® Endowed Chair for Drug Discovery.https://chemistry-europe.onlinelibrary.wiley.com/journal/14397633am2023BiochemistryGeneticsMicrobiology and Plant PathologySchool of Health Systems and Public Health (SHSPH)UP Centre for Sustainable Malaria Control (UP CSMC

    Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm

    Get PDF
    Background: Polyamine metabolism has a critical role in cell death and proliferation representing a potential target for intervention in breast cancer (BC). This study investigates the expression of spermine oxidase (SMO) and its prognostic significance in BC. Biochemical analysis of Spm analogues BENSpm and CPENSpm, utilized in anticancer therapy, was also carried out to test their property in silico and in vitro on the recombinant SMO enzyme. Methods: BC tissue samples were analyzed for SMO transcript level and SMO activity. Student’s t test was applied to evaluate the significance of the differences in value observed in T and NT samples. The structure modeling analysis of BENSpm and CPENSpm complexes formed with the SMO enzyme and their inhibitory activity, assayed by in vitro experiments, were examined. Results: Both the expression level of SMO mRNA and SMO enzyme activity were significantly lower in BC samples compared to NT samples. The modeling of BENSpm and CPENSpm complexes formed with SMO and their inhibition properties showed that both were good inhibitors. Conclusions: This study shows that underexpression of SMO is a negative marker in BC. The SMO induction is a remarkable chemotherapeutical target. The BENSpm and CPENSpm are efficient SMO inhibitors. The inhibition properties shown by these analogues could explain their poor positive outcomes in Phases I and II of clinical trials

    Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites

    Get PDF
    A new series of potent potent aryl/alkylated (bis)urea- and (bis)thiourea polyamine analogues were synthesized and evaluated in vitro for their antiplasmodial activity. Altering the carbon backbone and terminal substituents increased the potency of analogues in the compound library 3-fold, with the most active compounds, 15 and 16, showing half-maximal inhibitory concentrations (IC50 values) of 28 and 30 nM, respectively, against various Plasmodium falciparum parasite strains without any cross-resistance. In vitro evaluation of the cytotoxicity of these analogues revealed marked selectivity towards targeting malaria parasites compared to mammalian HepG2 cells (>5000-fold lower IC50 against the parasite). Preliminary biological evaluation of the polyamine analogue antiplasmodial phenotype revealed that (bis)urea compounds target parasite asexual proliferation, whereas (bis)thiourea compounds of the same series have the unique ability to block transmissible gametocyte forms of the parasite, indicating pluripharmacology against proliferative and non-proliferative forms of the parasite. In this manuscript, we describe these results and postulate a refined structure–activity relationship (SAR) model for antiplasmodial polyamine analogues. The terminally aryl/alkylated (bis)urea- and (bis)thiourea–polyamine analogues featuring a 3-5-3 or 3-6-3 carbon backbone represent a structurally novel and distinct class of potential antiplasmodials with activities in the low nanomolar range, and high selectivity against various lifecycle forms of P. falciparum parasites.South African National Research Foundation (FA2007050300003 & UID: 84627), the University of Pretoria and the South African Medical Research Council Strategic Health Initiatives Partnerships with the Medicines for Malaria Venture.http://www.elsevier.com/locate/bmc2016-08-31hb201
    • …
    corecore