18 research outputs found

    Acute and chronic respiratory effects of sodium borate particulate exposures.

    Get PDF
    This study examined work-related chronic abnormality in pulmonary function and work-related acute irritant symptoms associated with exposure to borate dust in mining and processing operations. Chronic effects were examined by pulmonary function at the beginning and end of a 7-year interval. Time-specific estimates of sodium borate particulate exposures were used to estimate cumulative exposure during the study interval. Change in pulmonary function over the 7 years was found unrelated to the estimate of cumulative exposure during that interval. Exposure-response associations also were examined with respect to short-term peak exposures and incidence of five symptoms of acute respiratory irritation. Hourly measures of health outcome and continuous measures of particulate exposure were made on each subject throughout the day. Whenever a subject reported one of the irritant symptoms, a symptom intensity score was also recorded along with the approximate time of onset. The findings indicated that exposure-response relationships were present for each of the specific symptoms at several symptom intensity levels. The associations were present when exposure was estimated by both day-long and short-term (15-min) time-weighted average exposures. Associations persisted after taking account of smoking, age, and the presence of a common cold. No significant difference in response rate was found between workers exposed to different types of sodium borate dusts

    Utjecaj izloženosti 1,6-heksametilen diizocijanatu (HDI) na vršni ekspiratorni protok u autolakirera u Iranu

    Get PDF
    The aim of this study was to investigate the effects of occupational exposure to 1,6-hexamethylene diisocyanate (HDI) on peak flowmetry in automobile body paint shop workers in Iran. We studied a population of 43 car painters exposed to HDI at their workplaces. Peak expiratory fl ow was tested for one working week, from the start to the end of each shift. Air was sampled and HDI analysed in parallel, according to the OSHA 42 method. Daily and weekly HDI exposure averages were (0.42±0.1) mg m-3 and (0.13±0.05) mg m-3, respectively. On painting days, 72 % of workers showed more than a 10 % variation in peak expiratory fl ow. Inhalation exposure exceeded the threshold limit value (TLV) ten times over. This strongly suggests that HDI affected the peak fl owmetry in the studied workers.Cilj je ovog ispitivanja bio utvrditi vršni protok u 43 iranska autolakirera profesionalno izložena 1,6-heksametilen diizocijanatu (HDI). Vršni ekspiratorni protok testiran je tjedan dana na početku i kraju svake smjene. Uzorkovanje i mjerenje HDI-ja u zraku radilo se istodobno s testiranjem vršnoga protoka, prema metodi OSHA 42. Prosječna dnevna izloženost radnika HDI-ju iznosila je (0.42±0.1) mg m-3, a tjedna (0.13±0.05) mg m-3. U 72 % radnika vršni ekspiratorni protok tijekom dana varirao je više od 10 %. Radnici su udisali deset puta više razine HDI-ja od graničnih te je moguće da je HDI utjecao na mjerenja plućne funkcije

    A Review of Published Quantitative Experimental Studies on Factors Affecting Laboratory Fume Hood Performance

    No full text
    This study attempted to identify the important factors that affect the performance of a laboratory fume hood and the relationship between the factors and hood performance under various conditions by analyzing and generalizing the results from other studies that quantitatively investigated fume hood performance. A literature search identified 43 studies that were published from 1966 to 2006. For each of those studies, information on the type of test methods used, the factors investigated, and the findings were recorded and summarized. Among the 43 quantitative experimental studies, 21 comparable studies were selected, and then a meta-analysis of the comparable studies was conducted. The exposure concentration variable from the resulting 617 independent test conditions was dichotomized into acceptable or unacceptable using the control level of 0.1 ppm tracer gas. Regression analysis using Cox proportional hazards models provided hood failure ratios for potential exposure determinants. The variables that were found to be statistically significant were the presence of a mannequin/human subject, the distance between a source and breathing zone, and the height of sash opening. In summary, performance of laboratory fume hoods was affected mainly by the presence of a mannequin/human subject, distance between a source and breathing zone, and height of sash opening. Presence of a mannequin/human subject in front of the hood adversely affects hood performance. Worker exposures to air contaminants can be greatly reduced by increasing the distance between the contaminant source and breathing zone and by reducing the height of sash opening. Many other factors can also affect hood performance. Checking face velocity by itself is unlikely to be sufficient in evaluating hood performance properly. An evaluation of the performance of a laboratory fume hood should be performed with a human subject or a mannequin in front of the hood and should address the effects of the activities performed by a hood user
    corecore