140 research outputs found

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination

    Get PDF
    Among the various applications for reversible holographic storage media, a particularly interesting one is time-gated holographic imaging (TGHI). This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography. In this technique, biological samples are illuminated within their transparency windowwith near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material—a composite based on the poly(arylene vinylene) copolymer TPD-PPV—that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions

    Nasal Delivery of an Adenovirus-Based Vaccine Bypasses Pre-Existing Immunity to the Vaccine Carrier and Improves the Immune Response in Mice

    Get PDF
    Pre-existing immunity to human adenovirus serotype 5 (Ad5) is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M.), nasal (I.N.) or oral (P.O.) route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP) fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-γ+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-γ+ CD8+ T cells (3.9±1% naïve vs. 3.6±1% pre-existing immunity, PEI) nor anti-Ebola neutralizing antibody (NAB, 40±10 reciprocal dilution, both groups). The number of INF-γ+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL) after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146±14, naïve vs. 120±16 SFC/million MNCs, PEI). However, pre-existing immunity reduced NAB levels in BAL by ∼25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-γ+ CD8+ T cells 10 days after administration (0.3±0.3% PEG vs. 1.7±0.5% unmodified). PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine

    Regulatory T Cells in the Pathogenesis and Healing of Chronic Human Dermal Leishmaniasis Caused by Leishmania (Viannia) Species

    Get PDF
    The immune inflammatory response is a double edged sword. During infectious diseases, regulatory T cells can prevent eradication of the pathogen but can also limit inflammation and tissue damage. We investigated the role of regulatory T cells in chronic dermal leishmaniasis caused by species of the parasite Leishmania that are endemic in South and Central America. We found that although individuals with chronic lesions have increased regulatory T cells in their blood and at skin sites where immune responses to Leishmania were taking place compared to infected individuals who do not develop disease, their capacity to control the inflammatory response to Leishmania was inferior. However, healing of chronic lesions at the end of treatment was accompanied by an increase in the number and capacity of regulatory T cells to inhibit the function of effector T cells that mediate the inflammatory response. Different subsets of regulatory T cells, defined by the expression of molecular markers, were identified during chronic disease and healing, supporting the participation of distinct regulatory T cells in the development of disease and the control of inflammation during the healing response. Immunotherapeutic strategies may allow these regulatory T cell subsets to be mobilized or mitigated to achieve healing

    Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency

    Get PDF
    Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan–Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals

    Cardiovascular magnetic resonance phase contrast imaging

    Get PDF
    corecore