2,650 research outputs found
Diurnal variation of mountain waves
Mountain waves could be modified as the boundary layer varies between stable and convective. However case studies show mountain waves day and night, and above e.g. convective rolls with precipitation lines over mountains. VHF radar measurements of vertical wind (1990–2006) confirm a seasonal variation of mountain-wave amplitude, yet there is little diurnal variation of amplitude. Mountain-wave azimuth shows possible diurnal variation compared to wind rotation across the boundary layer
All-weather volume imaging of the boundary layer and troposphere using the MU radar
International audienceThis paper shows the first volume-imaging radar that can run in any weather, revealing the turbulent three-dimensional structure and airflow of convective cells, rain clouds, breaking waves and deep convection as they evolve and move. Precipitation and clear air can be volume-imaged independently. Birds are detected as small high-power echoes moving near horizontal, at different speeds and directions from background wind. The volume-imaging method could be used to create a real-time virtual-reality view of the atmosphere, in effect making the invisible atmosphere visible in any weather
VHF volume-imaging radar observation of aspect-sensitive scatterers tilted in mountain waves above a convective boundary layer
International audienceThin stable atmospheric layers cause VHF radars to receive increased echo power from near zenith. Layers can be tilted from horizontal, for instance by gravity waves, and the direction of VHF "glinting" is measurable by spatial domain interferometry or many-beam Doppler beam swinging (DBS). This paper uses the Middle and Upper atmosphere (MU) radar, Shigaraki, Japan as a volume-imaging radar with 64-beam DBS, to show tilting of layers and air flow in mountain waves. Tilt of aspect-sensitive echo power from horizontal is nearly parallel to air flow, as assumed in earlier measurements of mountain-wave alignment. Vertical-wind measurements are self-consistent from different beam zenith angles, despite the combined effects of aspect sensitivity and horizontal-wind gradients
A statistical study of underestimates of wind speeds by VHF radar
International audienceComparisons are made between horizontal wind measurements carried out using a VHF-radar system at Aberystwyth (52.4°N, 4.1°W) and radiosondes launched from Aberporth, some 50 km to the south-west. The radar wind results are derived from Doppler wind measurements at zenith angles of 6° in two orthogonal planes and in the vertical direction. Measurements on a total of 398 days over a 2-year period are considered, but the major part of the study involves a statistical analysis of data collected during 75 radiosonde flights selected to minimise the spatial separation of the two sets of measurements. Whereas good agreement is found between the two sets of wind direction, radar-derived wind speeds show underestimates of 4?6% compared with radiosonde values over the height range 4?14 km. Studies of the characteristics of this discrepancy in wind speeds have concentrated on its directional dependence, the effects of the spatial separation of the two sets of measurements, and the influence of any uncertainty in the radar measurements of vertical velocities. The aspect sensitivity of radar echoes has previously been suggested as a cause of underestimates of wind speeds by VHF radar. The present statistical treatment and case-studies show that an appropriate correction can be applied using estimates of the effective radar beam angle derived from a comparison of echo powers at zenith angles of 4.2° and 8.5°
Liquid drop splashing on smooth, rough and textured surfaces
Splashing occurs when a liquid drop hits a dry solid surface at high
velocity. This paper reports experimental studies of how the splash depends on
the roughness and the texture of the surfaces as well as the viscosity of the
liquid. For smooth surfaces, there is a "corona" splash caused by the presence
of air surrounding the drop. There are several regimes that occur as the
velocity and liquid viscosity are varied. There is also a "prompt" splash that
depends on the roughness and texture of the surfaces. A measurement of the size
distribution of the ejected droplets is sensitive to the surface roughness. For
a textured surface in which pillars are arranged in a square lattice,
experiment shows that the splashing has a four-fold symmetry. The splash occurs
predominantly along the diagonal directions. In this geometry, two factors
affect splashing the most: the pillar height and spacing between pillars.Comment: 9 pages, 11 figure
- …