95 research outputs found

    Wiskott Aldrich syndrome protein regulates non-selective autophagy and mitochondrial homeostasis in human myeloid cells.

    Get PDF
    The actin cytoskeletal regulator Wiskott Aldrich syndrome protein (WASp) has been implicated in maintenance of the autophagy-inflammasome axis in innate murine immune cells. Here, we show that WASp deficiency is associated with impaired rapamycin-induced autophagosome formation and trafficking to lysosomes in primary human monocyte-derived macrophages (MDMs). WASp reconstitution in vitro and in WAS patients following clinical gene therapy restores autophagic flux and is dependent on the actin-related protein complex ARP2/3. Induction of mitochondrial damage with CCCP, as a model of selective autophagy, also reveals a novel ARP2/3-dependent role for WASp in formation of sequestrating actin cages and maintenance of mitochondrial network integrity. Furthermore, mitochondrial respiration is suppressed in WAS patient MDMs and unable to achieve normal maximal activity when stressed, indicating profound intrinsic metabolic dysfunction. Taken together, we provide evidence of new and important roles of human WASp in autophagic processes and immunometabolic regulation, which may mechanistically contribute to the complex WAS immunophenotype

    Quality of Life and Social and Psychological Outcomes in Adulthood Following Allogeneic HSCT in Childhood for Inborn Errors of Immunity

    Get PDF
    BACKGROUND: Hematopoietic stem cell transplant (HSCT) is well established as a corrective treatment for many inborn errors of immunity (IEIs) presenting in childhood. Due to improved techniques, more transplants are undertaken and patients are living longer. However, long-term complications can significantly affect future health and quality of life. Previous research has focused on short-term medical outcomes and little is known about health or psychosocial outcomes in adulthood. OBJECTIVE: This project aimed to ascertain the long-term social and psychological outcomes for adults who underwent HSCT for IEI during childhood. METHODS: Adult patients, who had all undergone HSCT for IEI during childhood at two specialist immunology services at least 5 years previously, were invited to participate in the study. Questionnaires and practical tasks assessed their current functioning and circumstances. Information was also gathered from medical notes. Data was compared with population norms and a control group of participant-nominated siblings or friends. RESULTS: Eighty-three patients and 46 matched controls participated in the study. Patients reported significantly better physical health-related quality of life than the general population norm, but significantly worse than matched controls. Patient's self-reported physical health status and the perceived impact of their physical health on everyday life were worse than matched controls and patients reported higher levels of anxiety and lower mood than the general population. For those where their IEI diagnosis was not associated with a learning disability, cognitive function was generally within the normal range. CONCLUSIONS: Patients who have had a HSCT in childhood report mixed psychosocial outcomes in adulthood. More research is needed to establish screening protocols and targeted interventions to maximize holistic outcomes. CLINICAL IMPLICATIONS: Screening for holistic needs and common mental health difficulties should be part of routine follow-up. Information should be provided to patients and families in order to support decision-making regarding progression to transplant and the early identification of any difficulties

    Non-osteopenic Bone Pathology After Allo-hematopoietic Stem Cell Transplantation in Patients with Inborn Errors of Immunity

    Get PDF
    PURPOSE: There is a lack of data on post-HSCT non-osteopenic bone pathology specifically for children with inborn errors of immunity (IEI). We collected data on non-osteopenic bone pathology in children with IEI post-HSCT over two decades in a large tertiary pediatric immunology center. METHODS: Descriptive study with data analysis of bone pathology in allo-HSCT for IEI was performed between 1/1/2000 to 31/12/2018 including patients alive at follow-up to July 2022. Records were analyzed for bone pathology and risk factors. Exclusion criteria included isolated reduced bone density, fractures, and skeletal anomalies due to underlying IEI and short stature without other bone pathology. Bone pathologies were divided into 5 categories: bone tumors; skeletal dysplasia; avascular necrosis; evolving bone deformities; slipped upper femoral epiphysis. RESULTS: A total of 429 children received HSCT between 2000 and 2018; 340 are alive at last assessment. Non-osteopenic bone pathology was observed post-HSCT in 9.4% of patients (32/340, mean 7.8 years post-HSCT). Eleven patients (34%) had > 1 category of bone pathology. Seventeen patients (17/32; 53%) presented with bilateral bone pathology. The majority of patients received treosulfan-based conditioning (26/32; 81.2%). Totally, 65.6% (21/32) of patients had a history of prolonged steroid use (> 6 months). Pain was the presenting symptom in 66% of patients, and surgical intervention was required in 43.7%. The highest incidence of bone pathologies was seen in Wiskott-Aldrich syndrome (WAS) (n = 8/34; 23.5%) followed by hemophagocytic lymphohistiocytosis patients (n = 3/16; 18.8%). CONCLUSION: Non-osteopenic bone pathology in long-term survivors of allo-HSCT for IEI is not rare. Most patients did not present with complaints until at least 5 years post-HSCT highlighting the need for ongoing bone health assessment for patients with IEI. Children presenting with stunted growth and bone pathology post-HSCT should undergo skeletal survey to rule out development of post-HSCT skeletal dysplasia. Increased rates and complexity of bone pathology were seen amongst patients with Wiskott-Aldrich syndrome

    Epstein-Barr Virus Reactivation After Paediatric Haematopoietic Stem Cell Transplantation: Risk Factors and Sensitivity Analysis of Mathematical Model

    Get PDF
    Epstein-Barr virus (EBV) establishes a lifelong latent infection in healthy humans, kept under immune control by cytotoxic T cells (CTLs). Following paediatric haematopoetic stem cell transplantation (HSCT), a loss of immune surveillance leads to opportunistic outgrowth of EBV-infected cells, resulting in EBV reactivation, which can ultimately progress to post-transplant lymphoproliferative disorder (PTLD). The aims of this study were to identify risk factors for EBV reactivation in children in the first 100 days post-HSCT and to assess the suitability of a previously reported mathematical model to mechanistically model EBV reactivation kinetics in this cohort. Retrospective electronic data were collected from 56 children who underwent HSCT at Great Ormond Street Hospital (GOSH) between 2005 and 2016. Using EBV viral load (VL) measurements from weekly quantitative PCR (qPCR) monitoring post-HSCT, a multivariable Cox proportional hazards (Cox-PH) model was developed to assess time to first EBV reactivation event in the first 100 days post-HSCT. Sensitivity analysis of a previously reported mathematical model was performed to identify key parameters affecting EBV VL. Cox-PH modelling revealed EBV seropositivity of the HSCT recipient and administration of anti-thymocyte globulin (ATG) pre-HSCT to be significantly associated with an increased risk of EBV reactivation in the first 100 days post-HSCT (adjusted hazard ratio (AHR) = 2.32, P = 0.02; AHR = 2.55, P = 0.04). Five parameters were found to affect EBV VL in sensitivity analysis of the previously reported mathematical model. In conclusion, we have assessed the effect of multiple covariates on EBV reactivation in the first 100 days post-HSCT in children and have identified key parameters in a previously reported mechanistic mathematical model that affect EBV VL. Future work will aim to fit this model to patient EBV VLs, develop the model to account for interindividual variability and model the effect of clinically relevant covariates such as rituximab therapy and ATG on EBV VL

    Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus.

    Get PDF
    Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome

    Thymus transplantation for complete DiGeorge syndrome: European experience

    Get PDF
    Background: Thymus transplantation is a promising strategy for the treatment of athymic complete DiGeorge syndrome (cDGS). Methods: Twelve patients with cDGS were transplanted with allogeneic cultured thymus. Objective: To confirm and extend the results previously obtained in a single centre. Results: Two patients died of pre-existing viral infections without developing thymopoeisis and one late death occurred from autoimmune thrombocytopaenia. One infant suffered septic shock shortly after transplant resulting in graft loss and the need for a second transplant. Evidence of thymopoeisis developed from 5-6 months after transplantation in ten patients. The median (range) of circulating naïve CD4 counts (x10663 /L) were 44(11-440) and 200(5-310) at twelve and twenty-four months post-transplant and T-cell receptor excision circles were 2238 (320-8807) and 4184 (1582 -24596) per106 65 T-cells. Counts did not usually reach normal levels for age but patients were able to clear pre-existing and later acquired infections. At a median of 49 months (22-80), eight have ceased prophylactic antimicrobials and five immunoglobulin replacement. Histological confirmation of thymopoeisis was seen in seven of eleven patients undergoing biopsy of transplanted tissue including five showing full maturation through to the terminal stage of Hassall body formation. Autoimmune regulator (AIRE) expression was also demonstrated. Autoimmune complications were seen in 7/12 patients. In two, early transient autoimmune haemolysis settled after treatment and did not recur. The other five suffered ongoing autoimmune problems including: thyroiditis (3); haemolysis (1), thrombocytopaenia (4) and neutropenia (1). Conclusions: This study confirms the previous reports that thymus transplantation can reconstitute T cells in cDGS but with frequent autoimmune complications in survivors

    Reduced-Intensity/Reduced-Toxicity Conditioning Approaches Are Tolerated in XIAP Deficiency but Patients Fare Poorly with Acute GVHD

    Get PDF
    X-linked inhibitor of apoptosis (XIAP) deficiency is an inherited primary immunodeficiency characterized by chronic inflammasome overactivity and associated with hemophagocytic lymphohistiocytosis (HLH) and inflammatory bowel disease (IBD). Allogeneic hematopoietic cell transplantation (HCT) with fully myeloablative conditioning may be curative but has been associated with poor outcomes. Reports of reduced-intensity conditioning (RIC) and reduced-toxicity conditioning (RTC) regimens suggest these approaches are well tolerated, but outcomes are not well established. Retrospective data were collected from an international cohort of 40 patients with XIAP deficiency who underwent HCT with RIC or RTC. Thirty-three (83%) patients had a history of HLH, and thirteen (33%) patients had IBD. Median age at HCT was 6.5 years. Grafts were from HLA-matched (n = 30, 75%) and HLA-mismatched (n = 10, 25%) donors. There were no cases of primary graft failure. Two (5%) patients experienced secondary graft failure, and three (8%) patients ultimately received a second HCT. Nine (23%) patients developed grade II-IV acute GVHD, and 3 (8%) developed extensive chronic GVHD. The estimated 2-year overall and event-free survival rates were 74% (CI 55-86%) and 64% (CI 46-77%), respectively. Recipient and donor HLA mismatch and grade II-IV acute GVHD were negatively associated with survival on multivariate analysis with hazard ratios of 5.8 (CI 1.5-23.3, p = 0.01) and 8.2 (CI 2.1-32.7, p < 0.01), respectively. These data suggest that XIAP patients tolerate RIC and RTC with survival rates similar to HCT of other genetic HLH disorders. Every effort should be made to prevent acute GVHD in XIAP-deficient patients who undergo allogeneic HCT

    Impact of newborn screening for SCID on the management of congenital athymia

    Get PDF
    BACKGROUND: Newborn screening (NBS) programmes for severe combined immunodeficiency (SCID) facilitate early SCID diagnosis and promote early treatment with haematopoietic stem cell transplantation, resulting in improved clinical outcomes. Infants with congenital athymia are also identified through NBS due to severe T-cell lymphopaenia. With the expanding introduction of NBS programmes, referrals of athymic patients for treatment with thymus transplantation have recently increased at Great Ormond Street Hospital (GOSH), London, United Kingdom. OBJECTIVE: We studied the impact of NBS on timely diagnosis and treatment of athymic infants with thymus transplantation at GOSH. METHODS: We compared the age at referral and complications between athymic infants diagnosed after clinical presentation (N=25) and patients identified through NBS (N=19), referred for thymus transplantation at GOSH between 10/2019 and 02/2023. We assessed whether age at time of treatment influences thymic output at 6 and 12 months after transplantation. RESULTS: Infants referred after NBS identification were significantly younger and had less complications, in particular less infections. All deaths occurred in the non-NBS group, including six patients before and two after thymus transplantation because of pre-existing infections. In the absence of significant co-morbidities or diagnostic uncertainties, timely treatment was more frequently achieved after NBS. Treatment at <4 months of age was associated with higher thymic output at 6- and 12-months post-transplantation. CONCLUSION: NBS contributes to earlier recognition of congenital athymia, promoting referral of athymic patients for thymus transplantation prior to acquiring infections or other complications, and facilitating treatment at younger age, thus playing an important role in improving their outcomes
    • …
    corecore