4 research outputs found

    An eclipsing 47 minute double white dwarf binary at 400 pc

    Get PDF
    We present the discovery of the eclipsing double white dwarf (WD) binary WDJ 022558.21−692025.38 that has an orbital period of 47.19 min. Following identification with the Transiting Exoplanet Survey Satellite, we obtained time-series ground based spectroscopy and high-speed multi-band ULTRACAM photometry which indicate a primary DA WD of mass 0.40 ± 0.04 M⊙ and a 0.28 ± 0.02 M⊙ mass secondary WD, which is likely of type DA as well. The system becomes the third-closest eclipsing double WD binary discovered with a distance of approximately 400 pc and will be a detectable source for upcoming gravitational wave detectors in the mHz frequency range. Its orbital decay will be measurable photometrically within 10 yrs to a precision of better than 1%. The fate of the binary is to merge in approximately 41 Myr, likely forming a single, more massive WD

    Eclipses during the 2010 eruption of the recurrent nova U Scorpii

    Get PDF
    The eruption of the recurrent nova U Scorpii on 2010 January 28 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented coverage is the first time that a nova has had any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R⊙. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R ⊙. For days 41-67, the optical source is a center-bright disk of radius 2.2 R⊙. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption

    Optical spectroscopic and photometric classification of the X-ray transient EP240309a (EP J115415.8-501810) as an intermediate polar

    No full text
    We report on optical follow-up observations of an X-ray source initially detected by the Einstein Probe mission. Our investigations categorize the source as an intermediate polar, a class of magnetic cataclysmic variables, exhibiting an orbital period of 3.7614(4) hours and a white dwarf spin period of 3.97 minutes. The orbital period was identified through TESS observations, while our high-speed photometric data, obtained using the 1.9m and Lesedi 1.0m telescopes at the South African Astronomical Observatory, revealed both the spin and beat periods. Additionally, we present orbitally phase-resolved spectroscopic observations using the 1.9m telescope, specifically centered on the Hbeta emission line, which reveal two emission components that exhibit Doppler variations throughout the orbital cycle
    corecore