218 research outputs found

    Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    Get PDF
    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination

    A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    Get PDF
    The design and performance of a portable, automated flow injection (FI)-based photometric monitor are described. The system is controlled by an in-house microcomputer system that enables the monitor (including a solid state detector) to operate from a 12 V battery supply. The monitor uses the cadmium reduction/diazotization method to analyse for nitrate with a linear range of 0 to 12 mg l-1 and a limit of detection of 0.05 mg l-1 (NO3-N). The hardware and software design, monitor performance and results obtained during unattended operation are presented

    On-line analyte preconcentration with atomic spectrometric detection

    Get PDF
    Pre-concentration of analytes, or matrix removal to overcome interferences using mini- or micro-columns of exchange media prior to atomic spectrometric detection is becoming increasingly more common. This paper is a review of some of the more recent applications of chelating, ion exchange and other resins and gels that have been used to accomplish this

    Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) for the determination of [Zn2+] in estuarine waters

    Get PDF
    Zinc (Zn) has been classified as a 'Specific Pollutant' under Annex VIII of the EU Water Framework Directive by two thirds of the EU member states. As a result, the UK Environmental Quality Standard (EQS) for Transitional and Coastal (TrAC) Waters has been reduced from 612 nM to 121 nM total dissolved Zn. It is widely accepted that the free metal ion ([Zn2+]) is the most bioavailable fraction, but there are few techniques available to determine its concentration in these waters. In this work, Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) has been applied, for the first time, to determine [Zn2+] in estuarine waters. The AGNES method had a mean RSD of +/- 18%, a (deposition time dependent) limit of detection of 0.73 nM and a [Zn2+] recovery of 112 +/- 19% from a certified reference material (BCR-505; Estuarine Water). AGNES results for 13 estuarine samples (salinity 0.1-31.9) compared well (P = 0.02) with Competitive Ligand Exchange Cathodic Stripping Voltammetry (CLE-AdCSV) except for one sample. AGNES requires minimal sample manipulation, is unaffected by adsorption of interfering species at the electrode surface and allows direct determination of free zinc ion concentrations. Therefore AGNES results can be used in conjunction with ecotoxicological studies and speciation modelling to set and test compliance with water quality standards.This PhD research is co-funded by the International Zinc Association, the International Copper Association, and Plymouth University. Warm thanks to Dr. Chris Cooper for his helpful comments, and to Marjan Heidarkhan Tehrani and Mireia Lao Martinez for their invaluable help and advice in the laboratory

    Distribution and redox speciation of dissolved iron on the European continental margin

    Get PDF
    To investigate the biogeochemistry of iron in the waters of the European continental margin, we determined the dissolved iron distribution and redox speciation in filtered (&lt;0.2 μm) open-ocean and shelf waters. Depth profiles were sampled over the shelf slope southeast of the Chapelle Bank area (47.61°N, 4.24°W to 46.00°N, 8.01°W) and a horizontal surface-water transect over the shelf and through the English Channel (la Manche) and the southern North Sea (46°N, 8°W to 52°N, 4°E). An abrupt trace-metal front was found near the shelf slope, indicated by a horizontal gradient of dissolved iron (DFe) and aluminium (DAl), which correlated with changing salinities (r2 = 0.572 and 0.528, respectively, n = 92). Labile Fe(II) concentrations varied from &lt;12 pmol L-1 in North Atlantic surface waters to &gt;200 pmol L-1 in the near bottom waters of the shelf break. Labile Fe(II) accounted for ∼5 of the dissolved iron species in surface shelf waters (mean 5.0 ± 2.7), whereas higher Fe(II) fractions (i.e., &gt;8) were observed near the sea bottom on the shelf break and during a midday solar maximum in surface waters in the vicinity of the Scheldt river plume. Benthic processes (resuspension and diagenesis) constituted important sources of Fe(II) and DFe in this region, and photoreduction of Fe(III) species in shelf waters caused enhanced labile Fe(II) concentrations. These processes increased the lability of iron and its potential availability to marine organisms in the shelf ecosystem. © 2007, by the American Society of Limnology and Oceanography, Inc

    A portable battery monitor for the in in natural waters -powered flow injection situ analysis of nitrate

    Get PDF
    1993 A portable battery-powered flow injection monitor for the in situ analysis of nitrate in natural waters

    Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    Get PDF
    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples

    An improved azo chromophore for optical NO2 sensing

    Get PDF

    Controls on Dissolved Cobalt in Surface Waters of the Sargasso Sea: Comparisons with Iron and Aluminum

    Get PDF
    Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (∼31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3-1.6 nM) and dAl (14-42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed. for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8-100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44-45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (\u3e80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects nutrient-type behavior, vs. scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface min. (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea
    • …
    corecore