144 research outputs found

    Toward a fully implantable ecosystem for adaptive neuromodulation in humans: Preliminary experience with the CorTec BrainInterchange device in a canine model

    Get PDF
    This article describes initial work toward an ecosystem for adaptive neuromodulation in humans by documenting the experience of implanting CorTec\u27s BrainInterchange (BIC) device in a beagle canine and using the BCI2000 environment to interact with the BIC device. It begins with laying out the substantial opportunity presented by a useful, easy-to-use, and widely available hardware/software ecosystem in the current landscape of the field of adaptive neuromodulation, and then describes experience with implantation, software integration, and post-surgical validation of recording of brain signals and implant parameters. Initial experience suggests that the hardware capabilities of the BIC device are fully supported by BCI2000, and that the BIC/BCI2000 device can record and process brain signals during free behavior. With further development and validation, the BIC/BCI2000 ecosystem could become an important tool for research into new adaptive neuromodulation protocols in humans

    Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum.

    Get PDF
    Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one\u27s own body

    Electrical Stimulation Modulates High γ Activity and Human Memory Performance.

    Get PDF
    Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases, and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders, it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22 patients during performance of verbal memory tasks. We found that high γ (62-118 Hz) activity induced by word presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with poor memory encoding. The high γ modulation correlated with the behavioral effect of stimulation in a given brain region: it was negative, i.e., the induced high γ activity was decreased, in the regions where stimulation decreased memory performance, and positive in the lateral TC where memory enhancement was observed. Our results suggest that the effect of electrical stimulation on high γ activity induced by word presentation may be a useful biomarker for mapping memory networks and guiding therapeutic brain stimulation

    A motor association area in the depths of the central sulcus

    Get PDF
    Cells in the precentral gyrus directly send signals to the periphery to generate movement and are principally organized as a topological map of the body. We find that movement-induced electrophysiological responses from depth electrodes extend this map three-dimensionally throughout the gyrus. Unexpectedly, this organization is interrupted by a previously undescribed motor association area in the depths of the midlateral aspect of the central sulcus. This \u27Rolandic motor association\u27 (RMA) area is active during movements of different body parts from both sides of the body and may be important for coordinating complex behaviors

    Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding

    Full text link
    Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding

    Controversies on the network theory of epilepsy : Debates held during the ICTALS 2019 conference

    Get PDF
    Acknowledgements We would like to acknowledge the contributions of the discussants to the exposition and discussion of the six debate topics. The discussants for debates 1-6 were Fabrice Wendling, Mark Cook, Mark Richardson, Thorsten Rings, Klaus Lehnertz and Piotr Suffczynski, respectively. Funding for ICTALS 2019 was received from the following foundations and industry partners: UCB S.A. (Belgium), American Epilepsy Society (AES), Epilepsy Innovation Institute (Ei2) and Epilepsy Foundation of America (EFA), NeuraLynx (Bozeman, MT, USA) and LivaNova (London, UK). The contribution of HZ was supported by award R01NS109062 from the National Institutes of Health, MG by the EPSRC via grants EP/P021417/1 and EP/N014391/1 and a Wellcome Trust Institutional Strategic Support Award (WT105618MA), and PJ by awards from the Ministry of Health of the Czech Republic AZV 17-28427A and the Czech Science Foundation 20-25298S. The opinions expressed in this article do not necessarily reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.Peer reviewedPostprin
    corecore