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Direct electrical stimulation of the brain has emerged as a powerful treatment for multiple neurological diseases,
and as a potential technique to enhance human cognition. Despite its application in a range of brain disorders,
it remains unclear how stimulation of discrete brain areas affects memory performance and the underlying
electrophysiological activities. Here, we investigated the effect of direct electrical stimulation in four brain regions
known to support declarative memory: hippocampus (HP), parahippocampal region (PH) neocortex, prefrontal
cortex (PF), and lateral temporal cortex (TC). Intracranial EEG recordings with stimulation were collected from 22
patients during performance of verbal memory tasks. We found that high � (62–118 Hz) activity induced by word
presentation was modulated by electrical stimulation. This modulatory effect was greatest for trials with “poor”
memory encoding. The high � modulation correlated with the behavioral effect of stimulation in a given brain
region: it was negative, i.e., the induced high � activity was decreased, in the regions where stimulation decreased
memory performance, and positive in the lateral TC where memory enhancement was observed. Our results
suggest that the effect of electrical stimulation on high � activity induced by word presentation may be a useful
biomarker for mapping memory networks and guiding therapeutic brain stimulation.

Key words: brain stimulation; cognitive enhancement; ECoG; �-activity; high-frequency oscillations; intracranial
EEG

Introduction
Studies of direct electrical stimulation of the human

brain were pioneered in epilepsy patients undergoing sur-
gery to treat drug resistant focal epilepsy. During the
surgery when patients were awake and stimulated in spe-
cific areas of the neocortex, they reported conscious
experience of past events (Penfield, 1958). This phenom-
enal effect of invoking declarative memory representa-
tions was more likely to occur when stimulating in a

discrete range of spectral and temporal parameters,
which led to a hypothesis that the electrical current that
was passed through the neural tissue activated specific
neurophysiological activity supporting memory (Bickford
et al., 1958; Penfield and Perot, 1963). In the current
study, free recall tasks were used to investigate how
stimulation in specific brain regions modulated the elec-
trophysiological activities induced by word presentation
and their subsequent recall.

Recent attempts at human memory enhancement have
primarily focused on the hippocampus (HP) and the as-
sociated mesial temporal lobe structures, with reports of
positive outcomes described in small studies of individual
brain regions (Suthana and Fried, 2014; Kim et al., 2016).
In general, however, studies have shown inconsistent
results for stimulation in mesial temporal lobe structures,
including: HP (Coleshill et al., 2004; Suthana et al., 2012;
Fell et al., 2013; Jacobs et al., 2016), entorhinal cortex
(Suthana et al., 2012; Fell et al., 2013; Jacobs et al., 2016),
and fornix (Hamani et al., 2008; Miller et al., 2015). The
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Significance Statement

Brain stimulation technologies for memory disorders can be advanced with improved understanding of the
physiologic processes modulated by electrical current. In this study, intracranial EEG recordings from
epilepsy patients performing memory tasks during direct brain stimulation revealed distinct changes in the
induced high � activity, particularly on the trials with poor memory encoding. Given that these physiologic
changes were correlated with the effect of stimulation on task performance, we propose they may be useful
as a biomarker to optimize brain stimulation parameters for memory enhancement. These findings could
help accelerate development of brain-machine interface technologies to treat memory and cognitive
disorders.
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effect of stimulation on the neurophysiological activity
associated with memory tasks was largely unexplored.
The positive effects of stimulation on memory reported in
some of these studies were observed either in a single
case (Hamani et al., 2008) or at the level of a group of
patients (Suthana et al., 2012; Miller et al., 2015) without
a detailed analysis of the electrophysiological signals,
which is often challenging because of the stimulation
artifacts (Johnson et al., 2013). In summary, limitations in
the sample size, number of brain regions tested, and
analysis have impeded our understanding of the impact of
direct human brain stimulation on memory processes.

� activities in the local field potential present one plau-
sible target for exploring the neurophysiology of memory
processes and the effect of stimulation. These activities
have been associated with cognitive functions, including
perception, attention and memory (Singer, 1993; Tallon-
Baudry and Bertrand, 1999; Fries, 2009; Düzel et al.,
2010). � activities in the high frequency ranges (40–150
Hz) were proposed to be generated by local neuronal
assemblies underlying cognitive processing during task
performance (Crone et al., 2006; Lachaux et al., 2012),
and thus provide a potential biomarker for mapping brain
functions. Recent studies of � activity in humans and
nonhuman primates showed discrete bursts of � power
induced by memorized stimuli (Kucewicz et al., 2014;
Lundqvist et al., 2016). In these studies, the rate of high �
burst events was associated with memory performance
and proposed to underlie the differences in average
power induced between trials with remembered and for-
gotten items, i.e., the subsequent memory effect (Kahana,
2006; Sederberg et al., 2007). Although the physiologic
source of � activities, local field oscillations or firing of
neuronal assemblies, and their role in cognitive function
are actively debated (Crone et al., 2006; Waldert et al.,
2013; Kucewicz et al., 2017), they may still be useful as a
measure of neuronal processing and modulation.

There is growing evidence that � activities can be mod-
ulated by external interventions. Optogenetic stimulation
of distinct neuron types was shown to increase � power in
the local field potential and enhance neuronal network
performance in rodents (Sohal, 2016). � power can also
be increased through neurofeedback training in specific
brain regions, as reported in nonhuman primate record-
ings that showed synchronous neuronal firing and en-
hanced behavioral performance (Engelhard et al., 2013).
Transcranial current stimulation is another approach used
to modulate � activities and, for instance, was shown to
induce dream self-awareness in the human subjects (Voss
et al., 2014). The effect of direct stimulation of the human
brain on � activities linked to memory performance has
been largely unexplored. However, the reports of a posi-
tive effect on memory performance in humans were all
stimulating at frequencies in the � range (40/50/200 Hz;
for review, see Kim et al., 2016), suggesting that the
applied current presumably modulated similar frequen-
cies of neuronal oscillations. Here, we tested the effect
of 50-Hz electrical stimulation on � activity and task
performance in four brain regions supporting declara-
tive memory.

Materials and Methods
Study participants

Patients undergoing intracranial electroencephalographic
monitoring as part of their clinical treatment for drug-
resistant epilepsy were recruited to participate in this
multi-center collaborative study. Data were collected from
the following clinical centers: (Mayo Clinic, Thomas Jef-
ferson University Hospital, Hospital of the University of
Pennsylvania, Dartmouth-Hitchcock Medical Center, Em-
ory University Hospital, University of Texas Southwestern
Medical Center). The research protocol was approved by
the respective IRB at each clinical center and informed
consent was obtained from each participant. Electrophys-
iological data were collected from standard clinical sub-
dural and penetrating depth electrodes (AdTech Inc., PMT
Inc.) implanted on the cortical surface and into the brain
parenchyma, respectively. The subdural electrode con-
tacts were arranged either in a grid or a strip configuration
with contacts separated by 10mm. The depth electrode
contacts were separated by 1.5–10 mm spacing. In each
case, the placement of the electrodes was determined by
a clinical team whose sole purpose was to localize sei-
zures for possible epilepsy surgery. In this study, we
identified 22 patients (nine males) with subdural or depth
electrodes implanted in at least one of the four brain
regions of the cortical-hippocampal declarative memory
system (Eichenbaum, 2000), who completed at least two
stimulation sessions in any of these regions (Tables 1, 2).

Anatomic localization and brain surface mapping
Cortical surface parcellations were generated for each

participant from preimplant magnetic resonance imaging
(MRI) scans (volumetric T1-weighted sequences) using
Freesurfer software (RRID:SCR_001847; Fischl et al.,
2004). The HP and surrounding cortical regions were delin-
eated separately based on an additional 2-mm-thick cor-
onal T2-weighted scan using the Automatic Segmentation
of Hippocampal Subfields (ASHS) multi-atlas segmenta-
tion method (Yushkevich et al., 2015). Electrode contact
coordinates derived from registered postimplant CT
scans were then mapped to the preimplant MRI scans to
determine their anatomic locations. For subdural strips
and grids the electrode contacts were additionally pro-
jected to the cortical surface using an energy minimization
algorithm to account for postoperative brain shift (Dykstra
et al., 2012). For comparisons across subjects, coordi-
nates were transformed to the MNI brain space, in which
distance between bipolar electrode pairs was estimated
using the shortest path from the stimulating electrode
pair. Contact locations were reviewed and confirmed on
surfaces and cross-sectional images by a neuroradiolo-
gist. For further visualization and presentation purposes,
surfaces and contact coordinates were rendered using
Blender (http://blender.org) and Blend4web (http://blend4web.
org) open source software in a customized interactive web
application.

Electrophysiological recordings
Intracranial data were recorded using one of the follow-

ing clinical electrophysiological acquisition systems spe-
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cific to a given site of data collection: Nihon Kohden
EEG-1200, Natus XLTek EMU 128, or Grass Aura-LTM64.
Depending on the acquisition system and the preference of
the clinical team, the signals were sampled at either 500,
1000, or 1600 Hz and were referenced to a common contact
placed either intracranially, on the scalp, or on the mastoid
process. For analysis all recordings using higher sampling
rates were down-sampled to 500 Hz. A bipolar montage was
calculated post hoc for each subject by subtracting mea-
sured voltage time series on all pairs of spatially adjacent
contacts. This resulted in N – 1 bipolar signals in case of the
penetrating and the strip electrodes, and N � x bipolar
signals for the grid electrodes, where N is the number of
electrode contacts and x is the number of extra combina-
tions of bipolar contacts that resulted from the montage.

Memory tasks with brain stimulation
The tasks were based on classic paradigms for probing

verbal memory (Kahana, 2012), in which subjects learned
lists of words for subsequent recall (Fig. 1A). Subjects
were instructed to study lists of individual words pre-
sented sequentially on a laptop computer screen for a
later memory test. Lists were composed of 12 words
chosen at random and without replacement from a pool of
high frequency nouns (either English or Spanish, depend-
ing on the participant’s native language; http://memory.
psych.upenn.edu/WordPools). Each session had a set of
25 specific lists using words from the same general pool.
The words on each list were either sampled from specific
categories like vehicles, music instruments and vegeta-
bles, or they were sampled randomly. Each word re-

Table 1. Clinical profile of the study participants

Subject
no. Age Gender Handedness SOZ MRI Brain pathology

Language
laterality
(method)

Stimulation
mapping
overlap vIQ

Verbal
memory
deficits

1001 48 F R Right TC Normal Gliosis L (fMRI) - 81 None
1006 20 F R Right FC MCD Gliosis L (fMRI) - 91 None
1016 31 F R Left FC Normal Gliosis - None 71 None
1018 47 M L Left FC,

left FPC
Normal - L (fMRI) - 85 None

1020 48 F L Right TC,
right FC

Abnormal Gliosis L (fMRI) - 98 Mild

1022 24 M R Atrophy
Gliosis/
encephalomalacia

- L (fMRI) - 81 None

1024 36 F R Right OPC Normal Gliosis L (unknown) - 100 None
1026 24 F R Left aTC

left OC
MTS, gliosis - Bilateral

(Wada)
- 112 None

1027 48 M R Right TC
right IC
right/left
FC

Abnormal - L (fMRI) - 93 None

1028 27 F R Right MTL Abnormal CD, Gliosis L (Wada) - 103 None
1029 33 F R Left FC Abnormal - - - 108 Mild
1030 23 M L Left MTL Normal Gliosis L (fMRI) - 106 None
1031 24 M R Right FC

right TC
Abnormal - L (aphasia) - 110 Moderate

1033 31 F R Right TC Atrophy - L (Wada) - 85 None
1036 49 M L Left aTC,

left MTL
MTS HS Bilateral

(Wada)
- 93 Moderate

1042 27 F L Right TC MCD - R (fMRI) None 114 None
1050 20 M R Left PC Neoplasm DNET Bilateral

(Wada)
None 95 Mild

1060 36 F R Right TC Normal Gliosis L (Wada) - 95 Mild
1069 26 M R Left FC MCD - L (Wada) - - Mild
1111 20 M R Left TC

left OPC
left OC

Gliosis Gliosis L (fMRI) - 108 None

1176 41 F R Right MTL
right IC

MTS - L (Wada) - 85 Moderate

1177 23 F R Left TC TS - L (aphasia) None 87 Moderate

Patient demographic data are presented together with clinical observations from structural MRI, clinically identified seizure onset zones (SOZs), pathology for
those subjects who underwent respective surgery, hemispheric laterality of language functions together with the method of determination (“aphasia” means
that the determination was done based on an identified lesion/pathology in a specific hemisphere), overlap of the stimulating electrodes with the language ar-
eas for patients who have undergone cortical stimulation mapping (“-“ means that the stimulation mapping was not performed or the report was not avail-
able), verbal IQ (vIQ), and the clinical qualitative description of verbal memory deficits as concluded in the neuropsychological assessment. FC, frontal cortex;
PC, parietal cortex; OC, occipital cortex; IC, insular cortex; aTC, anterior TC; MTL, mesial temporal lobe; TPC, temporo-parietal cortex; FPC, fronto-parietal
cortex; OPC, occipito-parietal cortex; CD, cortical dysplasia; HS, hippocampal sclerosis; MCD, malformation of cortical development; MTS, mesial temporal
sclerosis; PMG, polymicrogyria; DNET, dysembryoplastic neuroepithelial tumor.
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mained on the screen for 1600 ms, followed by a random
jitter of 750- to 1000-ms blank interval between stimuli.
Immediately following the final word in each list, partic-
ipants performed a distractor task (20 s) consisting of a
series of arithmetic problems of the form “A � B � C �
??”, where A, B, and C were randomly chosen integers
ranging from 1 to 9. Following the distractor task sub-
jects were given 30 s to verbally recall as many words
as possible from the list in any order. Vocal responses
were digitally recorded by the laptop computer and
later manually scored for analysis. Each session con-
sisted of 25 lists of this encoding-distractor-recall pro-
cedure.

Stimulation was applied by passing electrical current
between two adjacent electrode contacts using parame-
ters from the study (Suthana et al. 2012) showing a pos-
itive effect of stimulation on memory performance (bipolar
symmetric, charge-balanced, square-wave stimulation at
a frequency of 50 Hz and 300-�s pulse width). Safe
amplitude for stimulation was determined at the start of
each session using a mapping procedure in which stim-
ulation was applied at 0.5 mA while a neurologist moni-
tored for after-discharges. This procedure was repeated,
incrementing the amplitude in steps of 0.5 mA, up to a
maximum of 1.5 mA for depth contacts and 3.5 mA for
cortical surface contacts. These maximum amplitudes
were chosen to be below the after-discharge threshold
and below accepted safety limits for charge density (Mc-
Creery et al., 1990). The stimulation was delivered for
4600 ms during the presentation of two subsequent
words (from 200 ms before the first word onset to 200–

450 ms after second word offset due to a random jitter in
inter-stimulus interval) on every other word pair (three
pairs on every list with first pair pseudorandomized across
all lists in a given session). Stimulation was applied on 20
out of 25 randomly assigned lists of a full session. There
were no more than two sessions a day of a given task
separated by at least three hours. The target electrode
pair for stimulation was selected based on the anatomic
coverage of brain regions associated with declarative
memory functions (Eichenbaum, 2000), including hip-
pocampus (HP), parahippocampal region (PH), temporal
cortex (TC), and prefrontal cortex (PF). Within these re-
gions specific target electrode pairs for stimulation were
selected based on anatomic localization in one the
studied brain regions and based on mapping of active
areas showing a subsequent memory effect (Kahana,
2006; Sederberg et al., 2007). Electrodes had to be
localized outside the seizure onset zone, as defined by
the local clinical team. Additional clinical data were
collected about the localization of language functions
relative to the stimulation sites and neuropsychological
assessment of verbal memory (Table 1). Stimulation
amplitude was determined using conservative limits for
safe charge density (Gordon et al., 1990; McCreery
et al., 1990) for subdural or depth electrode contact, not
higher than 3.0 and 1.5 mA, respectively.

Electrophysiological analysis
Brain activity induced by word presentation was ana-

lyzed in this study, and comprised 1600 ms of word
display on the screen and 200-ms blank interval before
and after each word (total 2000 ms segments). Stimulated
word pair epochs were excluded from analysis to prevent
potential contamination of spectral analysis with the stim-
ulus artifact. Hence, one complete session yielded elec-
trophysiological signal from 60 nonstimulated list epochs
(five lists � 12 words) and 120 stimulated list epochs (20
lists � six words). Every signal epoch was spectrally
decomposed in 50-ms time bins using multi-taper Fast
Fourier Transform (Chronux toolbox, RRID:SCR_005547;
Bokil et al., 2010); taper parameters: 4-Hz bandwidth,
250-ms timewidth, one taper). To estimate power in dis-
tinct frequency bands (high �: 62–118 Hz, low �: 30–58
Hz, �: 14–26 Hz, �/�: 6–14 Hz) signals were bandpass
filtered between the corresponding cutoff frequencies
(Barlett-Hanning, 1000 order) before spectral decomposi-
tion to reduce any possible influence of lower frequencies
on the power estimate. The cutoff frequencies for the high
� band were chosen to minimize contamination of the
60-Hz line noise and its first harmonic at 120 Hz. The
decomposed spectral power values in a given frequency
band were log and z-score transformed in each frequency
bin to account for the power law effect and obtain values
that can be compared in the same scale across sessions
and subjects. Frequency bands in the low � and � ranges
between 1 and 5 Hz were not included in this study due to
different high-pass filters applied in signal acquisition
across the data collection centers. Average power esti-
mates were calculated from all epochs of the studied
words from nonstimulated lists.

Table 2. Summary of the experiments used to assess effect
of stimulation on encoding of word lists

Subject Sessions Localization Region Electrode Amplitude
1001 2 Left HP HP Depth 1.0
1006 2 Right HP HP Depth 1.0
1016 2 Left PF PF Subdural 3.5
1018 2 Left PF PF Depth 1.5
1020 4 Right HP HP Depth 1.0
1022 2 Left HP HP Depth 1.0
1024 3 Left HP HP Depth 1.0
1026 4 Left EC PH Depth 0.5
1027 2 Left HP HP Depth 1.0
1028 3 Right EC PH Subdural 1.0
1029 2 Left PF PF Subdural 3.5
1030 4 Left PHC PH Depth 0.5
1031 2 Right PRC PH Depth 1.5
1033 2 Left PRC PH Depth 1.5
1036 4 Left PRC PH Depth 1.0
1042 2 Right PF PF Subdural 1.5
1050 2 Left TC TC Subdural 1.5
1060 3 Right PF PF Subdural 3.0
1069 2 Left PF PF Subdural 2.5
1111 3 Left PHC PH Depth 0.75
1111 3 Left TC TC Subdural 1.5
1176 3 Left TC TC Depth 1.0
1177 4 Left TC TC Subdural 1.0

Analysis was focused on 23 subject experiments that had at least two ses-
sions with any one stimulation target in four of the studied brain regions.
PHC, PH cortex; PRC, perirhinal cortex; EC, entorhinal cortex.
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Exact time of memory encoding during the stimulus
presentation is difficult to determine and can vary be-
tween subjects. We used the maximum peak value of the
average power estimates as proxy for the brain response
related to the memory encoding. This maximum value of
the average power estimate was defined as peak power,
and the difference between peak power values from the
stimulated (Pstim) and nonstimulated (Pnon) list condition
was defined as the “neuromodulation (NM) index”:

NM � Pstim 	 Pnon

Pstim � f�t� ;0 
 t 
 2000ms

Pnon � f�t� ;0 
 t 
 2000ms

f(t) � a0 �
�
n�0

N

f(an)

N
, where f(an)

is the nth power estimate.

Surface plots were created using the peak power and
the NM index values interpolated between all bipolar pairs

on an electrode grid. Active electrodes were selected by
identifying outliers of the peak power value distributions
above the upper adjacency value (UAV; � third quartile �
1.5 � interquartile range), which were calculated from all
nonstimulated list epochs for every electrode in a given
patient. The identified active electrodes were used to
determine mean value of the NM index across all elec-
trodes in a given subject or brain region, which had active
electrodes from at least two subjects.

Behavioral analysis
Memory performance was quantified as count of words

recalled per list (with or without stimulation). To compare
the effect of stimulation on performance across subjects
the raw counts from all sessions in a given subject were
normalized into z-scores. Difference between means of
the scores on the stimulated and nonstimulated lists was
defined as a measure of stimulation’s effect on memory
performance (� behavioral score). At least two sessions in
a given stimulation target were required to be included in
data analysis to ensure an accurate estimate of the mean
for the nonstimulated lists, i.e., more than five scores were
required to estimate the mean.

Figure 1. Free recall tasks to study electrophysiological modulation of verbal memory encoding. A, Diagram of the task design, in
which subjects memorized word lists for subsequent recall. Thunderbolt marks the words with stimulation on the STIM lists. The
remaining word trials were used for electrophysiological analysis and are labeled according to the lists type (NON-STIM or STIM) and
their encoding based on subsequent recall (GOOD or POOR). B, Example of an 8 � 8 electrode grid implanted over the lateral TC
highlights in red two adjacent contacts used for brain stimulation (connected red dots) in subject 1050. C, Broadband spectrogram
(left column) shows trial-averaged power changes aligned to the time of word presentation for encoding, in contrast to the power
changes in the signal prefiltered in the four studied frequency bands (middle column), as recorded from a representative electrode
example from subject 1111. Line plots on the right summarize the mean power change response independently for the four bands
(rows) and separately for the good and poor encoding trials (columns) in the two conditions of list stimulation, color-coded as in A.
Notice the difference in peaks of the response (NM index) caused by stimulation in the poor encoding trials specifically in the high �
frequency band.
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Statistical analysis
All statistical tests were performed in Matlab (Math-

Works Inc., RRID:SCR_001622) using built-in and custom
written codes. One-way ANOVA test compared NM in-
dex calculated from the same set of electrodes from
one subject in different frequency bands (Fig. 3C). The
test was followed by Tukey–Kramer post hoc group com-
parison of the 95% confidence intervals of the means.
Pearson’s correlation was chosen to test dependence
between NM index and: peak power value (Fig. 3D), dis-
tance from the stimulating electrode (Fig. 3D), and the
behavioral effect of stimulation on memory performance
(Fig. 5D). For the former two the correlation was addition-
ally confirmed on the level of electrodes from individual
patients. The correlation plots were complemented with
least-squares lines to aid visual interpretation. ANOVA
test was used to compare the effect of stimulating in the
four studied regions on the NM index and on behavioral
performance. The test was followed by Tukey–Kramer
post hoc group comparison of the 95% confidence inter-
vals of the means. Data are shown as mean � SEM.
ANOVA tables are summarized in Table 3. All data col-
lected in this project are available at: http://memory.
psych.upenn.edu/RAM_Public_Data.

Results
We investigated the effect of direct brain stimulation on

electrophysiological activity and memory performance in
epilepsy patients undergoing evaluation for surgery to
treat refractory seizures. Each patient was implanted with
intracranial subdural, depth, or subdural and depth elec-
trode arrays in multiple cortical and subcortical brain
regions selected based solely on the clinical consider-
ations. We identified 22 patients who were implanted in
one of the four brain regions of the declarative memory
system (Eichenbaum, 2000) and completed at least two
sessions of free recall tasks with stimulation (Tables 1, 2).
The tasks were based on a classic paradigm for probing
verbal short-term memory (Kahana, 2012), in which sub-
jects learned lists of twelve words to be freely recalled in
any order following a distractor (Fig. 1A). Electrical stim-
ulation was applied between a pair of adjacent electrode

contacts during encoding of words for subsequent recall
(Fig. 1B). Low amplitude stimulation (�1.5 mA, 50-Hz
frequency, pulse width 300 &micro;s; Table 2) was applied
for 4.6 s during presentation of two consecutive words,
followed by presentation of two other words without any
stimulation to enable electrophysiological analysis with-
out stimulus artifact (Fig. 1A).

We found that stimulation in the lateral TC modulated
the spectral power specifically in the high � band (62–118
Hz) on electrodes showing induced responses to word
presentation (Fig. 1C), which was associated with en-
hanced memory performance (for behavioral analysis, see
Fig. 5). The high � response on trials with words that are
subsequently not recalled (“poor” encoding) is known to
be decreased relative to trials with the subsequently re-
called words (“good” encoding), as previously described
(Kahana 2006, Sederberg et al., 2007). Stimulation on the
poor encoding trials increased this high � response and
restored it to the magnitude observed on the good en-
coding trials with words that were subsequently recalled
(Fig. 1C). Thus, the subsequently forgotten words from
the stimulated “STIM” lists had increased high � response
relative to the words from the “NON-STIM” lists that were
not stimulated. Each experimental session comprised of
both the STIM and the NON-STIM lists, which were ran-
domly assigned in a double-blind fashion. The modulatory
effect of stimulation was quantified as a difference be-
tween peaks of the power response in the STIM minus the
NON-STIM condition, which we called the NM index (Fig.
1C). The peak response was thus used as proxy for brain
activity related to memory encoding.

This NM effect was localized to “activated” areas of the
brain showing the induced high � response in the tasks.
Figure 2 presents three exemplar cases of stimulation
from subdural surface grid electrodes in the TC, which
modulated the peak power responses. The top case de-
picts a single discrete area of the peak activation. The
magnitude of this discrete high � response is greater on
the good than the poor encoding trials in the NON-STIM
control condition. This disparity between the remembered
and the forgotten word trials is not present in the STIM

Table 3. Statistical tables for the analyses of variance

Source of variation Sum od squares Degrees of freedom Mean squares F ratio Probability � F
NM index in different frequency bands during the poor encoding trials

Groups 0.10172 3 0.03391 14.79 �0.0001
Error 0.19262 84 0.00229
Total 0.29434 87

NM index in different frequency bands during the good encoding trials
Groups 0.01226 3 0.00409 1.71 0.1708
Error 0.20053 84 0.00239
Total 0.21279 87

Effect of stimulation in different brain regions on memory performance
Groups 1.83311 3 0.61104 7.31 0.0019
Error 1.58778 19 0.08357
Total 3.4209 22

Effect of stimulation in different brain regions on NM
Groups 0.26765 3 0.08922 23.27 �0.001
Error 0.74363 194 0.00383
Total 1.01128 197
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condition with similar peaks on the two trial types (Fig.
2A). Stimulation therefore increased the high � response
on the poor encoding trials to the levels seen during good
encoding, selectively in the area of the induced task
activity. The middle case reveals that this effect was also
observed in an activated area of the occipital cortex,
which was distant from the site of stimulation located in
the TC (Fig. 2B). We did not observe this neuromodulatory
effect (quantified as the NM index) in the bottom case,
where no area in the TC was activated in the tasks (Fig.
2C). Cortical stimulation mapping of language functions

was performed as part of the clinical evaluation in patients
1050 and 1177, which showed no overlap with the target
stimulation electrodes (Table 1).

We quantified these observations for all electrodes in
the activated brain areas (“active” electrodes) in the only
stimulated subject who had more than ten such active
electrodes (n � 22). The active electrodes were selected
based on the distribution of the peak values of the high �
response from all available electrodes in a given patient
(Fig. 3A,B). To test whether the observed modulation was
specific to the high � band we compared the NM index

Figure 2. Stimulation modulates high � responses in localized areas activated in the tasks. A, Values of the peak power of the �
responses and the NM index from all 8 � 8 grid electrodes (blue dots, stimulating electrodes in red) of subject 1050, as in Figure 1B,
are interpolated and visualized as surface plots overlaid on this subject’s brain surface (left side). The first two columns present peaks
of the high � power in the STIM (first) and the NON-STIM (second) conditions, the third column presents the NM index, i.e., the
effective difference between the first two columns. Arrows point to a discrete area of peak power modulated by stimulation particularly
in the poor encoding trials. B, C, Analogous plots from two other cases of subject 1111 (brain surface rendering was turned upside
down to aid visualization) and 1177, respectively. Notice that the high � modulation is observed also at a distance from the stimulation
site in subject 1111 and is not observed in subject 1177.
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values in four nonoverlapping frequency bands (�/�, �,
low � and high �). A significant difference was found
between the studied bands in the condition of poor mem-
ory encoding (p � 0.0001, ANOVA, F � 14.8, degrees of
freedom � 3, 84) but not in the good memory encoding
(p � 0.171, ANOVA, F � 1.71, df � 3, 84) in this subject.
NM index values for the high � band in the poor encoding
condition were significantly more positive (Tukey–Kramer
post hoc test, p � 0.05) than for any of the other bands
(Fig. 3C). We further investigated whether these signifi-
cantly more positive values of NM index were correlated
with the amplitude of the high � response and with the
distance from the source of stimulation (Fig. 3D). The
mean NM index was positively correlated with the mean
amplitude of the high � response (Pearson’s correlation,
R � 0.627, p � 0.0018) and negatively correlated with the
distance from stimulation site (Pearson’s correlation, R �
-0.429, p � 0.0461). These correlations suggest that the
strength of modulation was dependent on the electrode
activity in the tasks and its proximity to the site of stimu-
lation.

In the final part of this study, we asked whether this
positive modulation of the high � activities induced in the
free recall memory tasks is specific to stimulation in the
lateral TC. We observed an inverse pattern of modulation
when the other studied brain regions were stimulated.
Figure 4 shows two example electrodes showing a posi-
tive NM index with TC stimulation (top rows) and two
negative index values with stimulation in the HP (bottom
rows). The latter came from subject 1024, who noted
decreased memory performance on the STIM relative to
the NON-STIM lists.

To test this observed relationship between the behav-
ioral performance and magnitude of the modulation in
different brain regions, we compared the effect of stimu-
lation in the four regions involved in the declarative mem-
ory system: PH (entorhinal/perirhinal and PH gyrus), HP
(subiculum and HP proper), lateral TC (middle and supe-
rior temporal gyrus), and PF (middle and inferior frontal
gyrus). Precise localization of all stimulation targets used
in every subject (N � 23) is shown on a unified brain
surface (Fig. 5A) and can be viewed online (to be identified
if the article is published). We summarized the behavioral
effect of stimulation across the studied brain regions to
find that all four subjects stimulated in the lateral TC
showed a positive effect on memory performance (Fig.
5B). There was a significant effect of the brain region (p �
0.0019, ANOVA test, F � 7.31, df � 3, 19) revealing a
stronger positive modulation of memory performance in
the TC stimulation group than any other brain region
(Tukey–Kramer test, p � 0.05). Stimulating in the four
regions also exerted different effects on the high � mod-
ulation (p � 0.001, ANOVA test, F � 23.27, df � 3, 194).
We found that the NM index, averaged over active
electrodes from stimulation in a given region (n � 198),
followed the same pattern (Fig. 5C) with a stronger
positive NM in the TC group compared to any other
group (Tukey–Kramer test, p � 0.05). Plotting the be-
havioral modulation score as a function of the mean NM
index for every subject (Fig. 5D) confirmed that the
electrophysiological effect of stimulation and memory
performance were correlated (Pearson’s correlation,
R � 0.50, p � 0.016). Subjects 1050 and 1111, who
noted the highest NM index values, demonstrated the

Figure 3. Stimulation selectively modulates task responses in the high � frequency band. A, Spectrogram of trial-averaged high �
response to word presentations recorded on an electrode in the brain area activated in the tasks. B, Active electrodes showing this
response were identified as positive outliers of the peak value distribution of this response (red data points above the solid line of
UAV). C, Mean NM index of all active electrodes in one stimulated patient (n � 36) is compared among four frequency bands in the
poor and good memory encoding conditions. Subplots on the right show post hoc comparison of the group means, dashed lines mark
the 95% CI intervals (error bars) for the high � group, and red indicates significant group with the intervals that do not overlap with
any other group. D, Scatterplots with least-square lines show correlations of the NM index values in the poor encoding condition
plotted against peak value of the task response (left) and against the distance from the stimulation site (right) for the active electrodes
from C. Notice that NM index was proportional to the induced power response and inversely proportional to the distance from the
stimulation site.
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greatest memory enhancement (Fig. 5D). Conversely,
subject 1024 with the lowest mean NM index, noted the
greatest memory impairment.

Discussion
In this work, we found evidence that electrical stimula-

tion in specific regions of the human brain modulates high
� activities induced during encoding of words for subse-
quent recall. Positive high � modulation, as observed with
stimulation in the lateral TC, was associated with the brain
region showing enhanced memory performance with
stimulation, whereas negative modulation was seen in the
HP, a region where stimulation had the opposite effect on
memory recall. Both structures have been proposed to
play differential roles in the declarative memory. HP and
the medial temporal lobe structures are thought to be
critical for binding episodic memory representations from
distributed regions in the neocortex, which process and
store memory (Squire and Zola-Morgan, 1991; Eichen-
baum, 2000). Previous studies using electrical stimulation
in the medial temporal lobe during memory performance
in human subjects showed mixed results (Kim et al.,
2016). Our results corroborate a recent report of stimula-
tion-induced impairment in a range of tasks, including the
free recall of word lists, applied in a large number of
patients stimulated in the HP and the entorhinal cortex
(Jacobs et al., 2016). Much less is known about the effect
of stimulation in the lateral TC. Since the original reports

of eliciting memory experience in individual epilepsy pa-
tients (Penfield and Perot, 1963), stimulation in this region
of the human brain has been predominantly used for
mapping language functions (Ojemann, 1991). Noninva-
sive stimulation (Tune and Asaridou, 2016) and imaging
studies (Binder et al., 2009) support the role of brain
regions in the lateral TC in processing semantic informa-
tion. Another study with large number of epilepsy patients
implanted with electrodes in various regions of the brain
found that epileptiform discharges were impairing mem-
ory encoding of word lists specifically if they occurred in
the lateral TC (Horak et al., 2017). Our results show that
stimulation applied in the lateral TC enhanced the high �
activities in response to word encoding. In summary,
there is a growing body of literature implicating the lateral
TC in verbal memory functions.

Stimulation-related enhancement of the induced high �
activities was observed on trials with poor memory en-
coding and not on the good encoding trials. In fact, the
average NM index for the high � band during good en-
coding trials turned out to be negative (Fig. 3C). In a
recent study of electrical stimulation applied during word
encoding, the induced high � activity was used to classify
brain states into good and poor encoding states and
predict that stimulating in the good state decreased the
probability of recall and vice versa increased probability of
recall when stimulating in the poor encoding state (Ezzyat

Figure 4. High � responses are positively and negatively modulated in different brain regions. Four electrode examples show
modulation of the task-induced high � activities by stimulation in the lateral TC (red) and the HP (green), as presented in another
example from Figure 1C. Arrows mark the positive and negative NM index changes in the three patients who showed the greatest
positive (upper rows) and negative (lower rows) behavioral effects of stimulation (Fig. 5).
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et al., 2017). This interesting finding of good and poor
encoding state-dependency is consistent with our obser-
vation of a positive stimulation-induced NM index during
the poor encoding trials and a negative index during the
good trials. Still, the positive effect of stimulation on the
high � activity was restricted to trials with words that were
ultimately forgotten, making it challenging to explain the
overall enhancement observed in the increased number of
recalled words.

The outcome of stimulation was not only determined by
the encoding brain state, but also by anatomic location.
Our results show that both the neurophysiology and the
behavior (recall performance) were differentially modu-
lated depending on the brain region tested. The same
stimulation pattern applied in the lateral TC versus the HP
had opposite effects on the high � responses and the
associated recall performance (Fig. 5). The exact factors
causing these differential effects on the neurophysiology
and behavior remain unclear. The difference could be
related to the qualitative differences in the electrode con-
tacts used for stimulation, i.e., penetrating depth elec-
trodes in the HP and subdural electrodes on lateral TC,
but the surface area of the different electrodes is similar.
In addition, five out of six subjects undergoing stimulation
in the PF group were stimulated using subdural elec-
trodes and did not show the same neurophysiological or
behavioral effect as in the TC group. Further, the differ-
ence could be attributed to the range of stimulation pa-
rameters used. The original studies with epilepsy patients

found that only a given set of amplitude and frequency
parameters elicited the memory experience (Bickford
et al., 1958; Penfield and Perot, 1963). Stimulating the
same regions of the brain with higher amplitudes is known
to disrupt cognitive processing of, e.g., verbal information
mapped in these patients (Ojemann, 1991) as applied in
clinical language mapping. Therefore, our reported results
may not necessarily generalize to other tasks or be repli-
cable with different set of parameters, which could not be
tested within the scope of this study. Nevertheless, the
results hold promise for using high � activities as a bio-
marker of NM to target optimal parameters, phases and
sites for stimulation and support that the stimulated
region in the posterior half of the middle and superior
temporal gyrus is specifically important for modulating
memory processes engaged in these tasks.

Regarding the possible target sites, within the lateral TC
there were distinct focal areas where word encoding in-
duced the high � activity (Fig. 2). These “islands” of high
frequency power have been reported in the intracranial
recordings during tasks (Kucewicz et al., 2014, 2017),
which may indicate local processing of neuronal assem-
blies (Crone et al., 2006; Lachaux et al., 2012) and be
used to map target sites for stimulation. Interestingly, the
precise localization of the foci of high � activities was not
exactly the same in the studied subjects even within the
lateral TC, possibly due to different strategies employed
by subjects in these tasks (e.g., remembering more se-
mantic or visual representations). At this point we can only

Figure 5. Modulation of high � activity in different brain regions is correlated with behavior. A, Localization of the stimulation sites in
the lateral TC (red contact pairs) and the other three brain regions studied (black contact pairs) is visualized in a unified transparent
brain surface. B, Stimulation-induced change in memory performance for every subject (each bar is one subject) reveals that
stimulation in the TC had a positive effect on performance compared to the other brain regions (PF). Post hoc group comparison (right
side) shows that TC scores are greater than PH, HP, PF (dashed lines are 95% CI of the TC group). C, NM index values reveal the
same pattern as in B, averaged from all active electrodes in a given group [n � 38 (PH), n � 80 (HP), n � 36 (TC), n � 44 (PFC)]. D,
The behavioral and NM index scores averaged for each subject (color-coded dots) are correlated. Least-square line is added in black,
crossing the two dashed lines at point 0 indicating no stimulation-induced changes.
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speculate about the effects of stimulating in the focus or
perimeter of these islands, over a gyrus or a sulcus, or at
various scales of neuronal organization. Successful stim-
ulation sites were localized on the middle temporal gyrus
adjacent to the high � island in two out of four subjects,
who showed the strongest positive effect on neurophys-
iology and behavior (Fig. 5). Our study as well as others in
the field (Suthana and Fried, 2014; Kim et al., 2016;
Jacobs et al., 2016; Ezzyat et al., 2017) were performed
with standard clinical electrodes with contacts of diame-
ters ranging from 1 to 10mm2 and separated by 5-10 mm.
We speculate that future studies using combined macro-
and micro-electrode arrays could provide additional infor-
mation of the spatial scale of the neuronal networks un-
derlying memory function (Le Van Quyen et al., 2010;
Viventi et al., 2011; Worrell et al., 2012; Kucewicz et al.,
2016).

With regard to the target phases and parameters for
stimulation, there are many other possible approaches to
enhance memory processing and task performance. We
have focused on modulating the encoding of memorized
stimuli during their presentation, which induces high
frequency activities. Another approach is to modulate
maintenance, consolidation or retrieval of memory for the
encoded items, which are thought to engage oscillatory
activities in the lower frequency bands, including the �
rhythm (Buzsaki, 2006; Düzel et al., 2010). These lower
frequency oscillations were shown to be more widely
spread than the focal � responses (Burke et al., 2013;
Kucewicz et al., 2014), thus possibly providing a viable
target for noninvasive stimulation techniques. For in-
stance, transcranial magnetic stimulation was employed
to modulate � oscillations mapped in parietal cortex to
enhance retention of nonverbal memory (Albouy et al.,
2017). Memory performance was increased in 13 out of 17
subjects and attributed to entrainment of the � oscillations
during the maintenance phase of the task. Other studies
using noninvasive stimulation in similar tasks to probe
active maintenance of memory in the PF showed mixed
effects on reaction time and accuracy (Brunoni and Van-
derhasselt, 2014). Although these studies are limited in
terms of elucidating the ongoing neurophysiological ac-
tivity, they complement the invasive intracranial record-
ings with insight into other measures of neural excitability
and plasticity (Kincses et al., 2004; Fregni et al., 2005).

The precise memory processes that were modulated in
our study are elusive. The observed NM did not directly
enhance memory encoding per se since the high � mod-
ulation was observed on the poor encoding trials with
words that were subsequently forgotten. It could rather
enhance memory performance through an associated
process. Selective attention, perception and computation
of sensorimotor information were all proposed as func-
tions of � oscillations (Singer, 1993; Tallon-Baudry and
Bertrand, 1999; Jensen et al., 2007; Fries, 2009), which
are essential to memory performance. If stimulation worked
by increasing the level of attention and/or sensory pro-
cessing of words, it would aid their encoding but not
necessarily improve the retention and recall of all of them.
In this scenario, the likelihood of successful memory en-

coding would be increased specifically on the trials with
words that were not adequately attended and processed.
As a result, more of these words would end up being
recalled due to this enhanced attention or perception to
the verbal stimuli, which is what we observed on the
behavioral level. There would still be words that did not
end up being recalled despite the stimulation-induced
enhancement of these associated processes. In summary,
stimulation would restore processing of these allegedly “less
attended” words, increasing their subsequent recall proba-
bility that would lead some, but not all, to transition and add
to the number of the recalled words (the good encoding
group). Disentangling this challenging relationship between
memory and the associated processes requires additional
experiments that can track attention and sensory processing
through other behavioral or autonomic measures, e.g., the
eye movements or pupil dilation.

Another way to identify the cognitive processes modu-
lated by electrical stimulation is to test the existing com-
putational models of memory. One can look for example
at the classic primacy and recency effect in remembering
lists of stimuli (Murdock, 1962) or the temporal contiguity
effect (Sederberg et al., 2010). The former model incor-
porates serial position of a word on the presented lists
with a prior knowledge that the ones in the beginning and
in the end of the list tend to be more attended, and thus
better recalled, than the middle-list words. The latter is a
model of the probability of recall based on temporal prox-
imity of the presented words; words presented next to
each other are more likely to be recalled together. In the
current paper, we explored these possibilities and did not
find compelling evidence for either; however, the current
study is limited by a small number of trials to compare.
Both of these models may prove useful in future for
elucidating the effect of stimulation on memory process-
ing with larger number of subjects.

Finally, physiologic mechanisms of the high � modula-
tion and how it is linked with the associated behavioral
effect remain to be explored. Direct brain stimulation is
thought to primarily activate neuronal axons rather than
cell bodies (Perlmutter and Mink, 2006), which would
provide one explanation for why the electrophysiological
effects were observed and not only in the region of stim-
ulation but also in more distant islands of high � activity,
presumably connected with each other. It could also ac-
count for the disparity between the frequency of stimula-
tion (50 Hz) and the higher frequencies of the modulated
high � response. Axons of the stimulated white matter
tracts may be depolarized and trigger a response of neu-
ronal assemblies oscillating at other frequencies in the
distant brain regions they connect. Supporting evidence
for the role of axonal stimulation comes from micro-elec-
trode stimulation combined with calcium imaging that
shows wide-spread activation of sparsely distributed neu-
rons instead of local depolarization of neurons surround-
ing the stimulating electrode (Histed et al., 2009).

We observed that the modulation was stronger on elec-
trodes closer to the stimulation site and more active in the
tasks. This may possibly reflect a small-world network
organization of the brain (Bassett and Bullmore, 2006),
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which proposes higher number of local and fewer long-
distance connections. Therefore, more of the short-range
local connections would be depolarized by the electric
current and activate more proximal neuronal assemblies,
relative to the longer-distance assemblies. In this network
view of brain modulation, stimulation would also exert the
strongest effect when applied to brain regions, which
were critical nodes, i.e., hubs, with many connections to
other active nodes in a given network. The lateral TC and
the HP, where we observed the strongest positive and
negative modulation of high � activities respectively, are
both considered critical hubs for declarative memory net-
works. Therefore, finding and targeting these critical con-
nection hubs to modulate the whole network instead of a
single brain region may be the most efficient strategy for
enhancing memory processes (Kim et al., 2016). In our
study, stimulation in the lateral TC could work by activat-
ing a network hub for verbal declarative memory. These
network hubs can potentially be more effectively identified
using various measures of connectivity and temporal
interactions like spectral coherence or cross-frequency
coupling. Future investigations of the brain connectomics
data and modeling tools combined with high-density elec-
trophysiological recordings promise to shed light on the
mechanisms of electrical modulation for memory and
cognitive enhancement.

References
Albouy P, Weiss A, Baillet S, Zatorre RJ (2017) Selective entrainment

of theta oscillations in the dorsal stream causally enhances audi-
tory working memory performance. Neuron 94:193–206.e5. Cross-
Ref

Bassett DS, Bullmore E (2006) Small-world brain networks. Neurosci
Rev J Bringing Neurobiol Neurol Psychiatry 12:512–523. CrossRef
Medline

Bickford RG, Mulder DW, Dodge HW, Svien HJ, Rome HP (1958)
Changes in memory function produced by electrical stimulation of
the temporal lobe in man. Res Publ Assoc Res Nerv Ment Dis
36:227–240; discussion 241–243.

Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the
semantic system? A critical review and meta-analysis of 120 func-
tional neuroimaging studies. Cereb Cortex 19:2767–2796. Cross-
Ref

Bokil H, Andrews P, Kulkarni JE, Mehta S, Mitra PP (2010) Chronux:
a platform for analyzing neural signals. J Neurosci Methods 192:
146–151. CrossRef Medline

Brunoni AR, Vanderhasselt M-A (2014) Working memory improve-
ment with non-invasive brain stimulation of the dorsolateral pre-
frontal cortex: a systematic review and meta-analysis. Brain Cogn
86:1–9. CrossRef Medline

Burke JF, Zaghloul KA, Jacobs J, Williams RB, Sperling MR, Sharan
AD, Kahana MJ (2013) Synchronous and asynchronous theta and
gamma activity during episodic memory formation. J Neurosci
33:292–304. CrossRef Medline

Buzsaki G (2006) Rhythms of the brain. Oxford, New York: Oxford
University Press.

Coleshill SG, Binnie CD, Morris RG, Alarcón G, van Emde Boas W,
Velis DN, Simmons A, Polkey CE, van Veelen CWM, van Rijen PC
(2004) Material-specific recognition memory deficits elicited by
unilateral hippocampal electrical stimulation. J Neurosci 24:1612–
1616. CrossRef

Crone NE, Sinai A, Korzeniewska A (2006) High-frequency gamma
oscillations and human brain mapping with electrocorticography.
Prog Brain Res 159:275–295. CrossRef Medline

Düzel E, Penny WD, Burgess N (2010) Brain oscillations and memory.
Curr Opin Neurobiol 20:143–149. CrossRef Medline

Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J,
Madsen JR, Eskandar EN, Cash SS (2012) Individualized localiza-
tion and cortical surface-based registration of intracranial elec-
trodes. Neuroimage 59:3563–3570. CrossRef Medline

Eichenbaum H (2000) A cortical-hippocampal system for declarative
memory. Nat Rev Neurosci 1:41–50. CrossRef Medline

Engelhard B, Ozeri N, Israel Z, Bergman H, Vaadia E (2013) Inducing
� oscillations and precise spike synchrony by operant conditioning
via brain-machine interface. Neuron 77:361–375. CrossRef Med-
line

Ezzyat Y, Kragel JE, Burke JF, Levy DF, Lyalenko A, Wanda P,
O’Sullivan L, Hurley KB, Busygin S, Pedisich I, Sperling MR,
Worrell GA, Kucewicz MT, Davis KA, Lucas TH, Inman CS, Lega
BC, Jobst BC, Sheth SA, Zaghloul K, et al. (2017) Direct brain
stimulation modulates encoding states and memory performance
in humans. Curr Biol 27:1251–1258. CrossRef Medline

Fell J, Staresina BP, Do Lam ATA, Widman G, Helmstaedter C, Elger
CE, Axmacher N (2013) Memory modulation by weak synchronous
deep brain stimulation: a pilot study. Brain Stimul 6:270–273.
CrossRef

Fischl B, van der Kouwe A, Destrieux C, Halgren E, Ségonne F, Salat
DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V,
Makris N, Rosen B, Dale AM (2004) Automatically parcellating the
human cerebral cortex. Cereb Cortex 14:11–22.

Fregni F, Boggio PS, Nitsche M, Bermpohl F, Antal A, Feredoes E,
Marcolin MA, Rigonatti SP, Silva MTA, Paulus W, Pascual-Leone A
(2005) Anodal transcranial direct current stimulation of prefrontal
cortex enhances working memory. Exp Brain Res 166:23–30.
CrossRef

Fries P (2009) Neuronal gamma-band synchronization as a funda-
mental process in cortical computation. Annu Rev Neurosci 32:
209–224. CrossRef Medline

Gordon B, Lesser RP, Rance NE, Hart J, Webber R, Uematsu S,
Fisher RS (1990) Parameters for direct cortical electrical stimula-
tion in the human: histopathologic confirmation. Electroencepha-
logr Clin Neurophysiol 75:371–377. Medline

Hamani C, McAndrews MP, Cohn M, Oh M, Zumsteg D, Shapiro CM,
Wennberg RA, Lozano AM (2008) Memory enhancement induced
by hypothalamic/fornix deep brain stimulation. Ann Neurol 63:
119–123. CrossRef Medline

Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse,
distributed populations of cortical neurons by electrical micro-
stimulation. Neuron 63:508–522. CrossRef Medline

Horak PC, Meisenhelter S, Song Y, Testorf ME, Kahana MJ, Viles
WD, Bujarski KA, Connolly AC, Robbins AA, Sperling MR, Sharan
AD, Worrell GA, Miller LR, Gross RE, Davis KA, Roberts DW, Lega
B, Sheth SA, Zaghloul KA, Stein JM, et al. (2017) Interictal epilep-
tiform discharges impair word recall in multiple brain areas. Epi-
lepsia 58:373–380.

Jacobs J, Miller J, Lee SA, Coffey T, Watrous AJ, Sperling MR,
Sharan A, Worrell G, Berry B, Lega B, Jobst BC, Davis K, Gross
RE, Sheth SA, Ezzyat Y, Das SR, Stein J, Gorniak R, Kahana MJ,
Rizzuto DS (2016) Direct electrical stimulation of the human ento-
rhinal region and hippocampus impairs memory. Neuron 92:983–
990. CrossRef Medline

Jensen O, Kaiser J, Lachaux J-P (2007) Human gamma-frequency
oscillations associated with attention and memory. Trends Neuro-
sci 30:317–324. CrossRef Medline

Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, Holt
A, Lim KO, Carey JR, Vitek JL, He B (2013) Neuromodulation for
brain disorders: challenges and opportunities. IEEE Trans Biomed
Eng 60:610–624. CrossRef Medline

Kahana MJ (2006) The cognitive correlates of human brain oscilla-
tions. J Neurosci 26:1669–1672. CrossRef Medline

Kahana M (2012) Foundations of human memory. Oxford, New York:
Oxford University Press.

Kim K, Ekstrom AD, Tandon N (2016) A network approach for
modulating memory processes via direct and indirect brain stim-

New Research 13 of 14

January/February 2018, 5(1) e0369-17.2018 eNeuro.org

http://dx.doi.org/10.1016/j.neuron.2017.03.015
http://dx.doi.org/10.1016/j.neuron.2017.03.015
http://dx.doi.org/10.1177/1073858406293182
http://www.ncbi.nlm.nih.gov/pubmed/17079517
http://dx.doi.org/10.1093/cercor/bhp055
http://dx.doi.org/10.1093/cercor/bhp055
http://dx.doi.org/10.1016/j.jneumeth.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20637804
http://dx.doi.org/10.1016/j.bandc.2014.01.008
http://www.ncbi.nlm.nih.gov/pubmed/24514153
http://dx.doi.org/10.1523/JNEUROSCI.2057-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23283342
http://dx.doi.org/10.1523/JNEUROSCI.4352-03.2004
http://dx.doi.org/10.1016/S0079-6123(06)59019-3
http://www.ncbi.nlm.nih.gov/pubmed/17071238
http://dx.doi.org/10.1016/j.conb.2010.01.004
http://www.ncbi.nlm.nih.gov/pubmed/20181475
http://dx.doi.org/10.1016/j.neuroimage.2011.11.046
http://www.ncbi.nlm.nih.gov/pubmed/22155045
http://dx.doi.org/10.1038/35036213
http://www.ncbi.nlm.nih.gov/pubmed/11252767
http://dx.doi.org/10.1016/j.neuron.2012.11.015
http://www.ncbi.nlm.nih.gov/pubmed/23352171
http://www.ncbi.nlm.nih.gov/pubmed/23352171
http://dx.doi.org/10.1016/j.cub.2017.03.028
http://www.ncbi.nlm.nih.gov/pubmed/28434860
http://dx.doi.org/10.1016/j.brs.2012.08.001
http://dx.doi.org/10.1007/s00221-005-2334-6
http://dx.doi.org/10.1146/annurev.neuro.051508.135603
http://www.ncbi.nlm.nih.gov/pubmed/19400723
http://www.ncbi.nlm.nih.gov/pubmed/1692272
http://dx.doi.org/10.1002/ana.21295
http://www.ncbi.nlm.nih.gov/pubmed/18232017
http://dx.doi.org/10.1016/j.neuron.2009.07.016
http://www.ncbi.nlm.nih.gov/pubmed/19709632
http://dx.doi.org/10.1016/j.neuron.2016.10.062
http://www.ncbi.nlm.nih.gov/pubmed/27930911
http://dx.doi.org/10.1016/j.tins.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17499860
http://dx.doi.org/10.1109/TBME.2013.2244890
http://www.ncbi.nlm.nih.gov/pubmed/23380851
http://dx.doi.org/10.1523/JNEUROSCI.3737-05c.2006
http://www.ncbi.nlm.nih.gov/pubmed/16467513


ulation: toward a causal approach for the neural basis of memory.
Neurobiol Learn Mem 134:162–177.

Kincses TZ, Antal A, Nitsche MA, Bártfai O, Paulus W (2004) Facili-
tation of probabilistic classification learning by transcranial direct
current stimulation of the prefrontal cortex in the human. Neuro-
psychologia 42:113–117. Medline

Kucewicz MT, Cimbalnik J, Matsumoto JY, Brinkmann BH, Bower
MR, Vasoli V, Sulc V, Meyer F, Marsh WR, Stead SM, Worrell GA
(2014) High frequency oscillations are associated with cognitive
processing in human recognition memory. Brain J Neurol 137:
2231–2244. CrossRef

Kucewicz MT, Michael Berry B, Bower MR, Cimbalnik J, Svehlik V,
Matt Stead S, Worrell GA (2016) Combined single neuron unit
activity and local field potential oscillations in a human visual
recognition memory task. IEEE Trans Biomed Eng 63:67–75.
CrossRef

Kucewicz MT, Berry BM, Kremen V, Brinkmann BH, Sperling MR,
Jobst BC, Gross RE, Lega B, Sheth SA, Stein JM, Das SR, Gorniak
R, Stead SM, Rizzuto DS, Kahana MJ, Worrell GA (2017) Dissect-
ing gamma frequency activity during human memory processing.
Brain 140:1337–1350. CrossRef Medline

Lachaux J-P, Axmacher N, Mormann F, Halgren E, Crone NE (2012)
High-frequency neural activity and human cognition: past, present
and possible future of intracranial EEG research. Prog Neurobiol
98:279–301. CrossRef Medline

Le Van Quyen M, Staba R, Bragin A, Dickson C, Valderrama M, Fried
I, Engel J (2010) Large-scale microelectrode recordings of high-
frequency gamma oscillations in human cortex during sleep. J
Neurosci 30:7770–7782. CrossRef

Lundqvist M, Rose J, Herman P, Brincat SL, Buschman TJ, Miller EK
(2016) Gamma and beta bursts underlie working memory. Neuron
90:152–164.

McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density
and charge per phase as cofactors in neural injury induced by
electrical stimulation. IEEE Trans Biomed Eng 37:996–1001. Med-
line

Miller JP, Sweet JA, Bailey CM, Munyon CN, Luders HO, Fastenau
PS (2015) Visual-spatial memory may be enhanced with theta
burst deep brain stimulation of the fornix: a preliminary investiga-
tion with four cases. Brain 138:1833–1842.

Murdock BB (1962) Serial position effect in free recall. J Exp Psychol
64:482–488. CrossRef

Ojemann GA (1991) Cortical organization of language. J Neurosci
11:2281–2287. Medline

Penfield W (1958) Some mechanisms of consciousness discovered
during electrical stimulation of the brain. Proc Natl Acad Sci USA
44:51–66. Medline

Penfield W, Perot P (1963) The brain’s record of auditory and visual
experience. Brain 86:595–696. Medline

Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev
Neurosci 29:229–257. CrossRef Medline

Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, Mc-
Carthy DC, Brandt A, Tully MS, Kahana MJ (2007) Hippocampal
and neocortical gamma oscillations predict memory formation in
humans. Cereb Cortex 17:1190–1196.

Sederberg PB, Miller JF, Howard MW, Kahana MJ (2010) The tem-
poral contiguity effect predicts episodic memory performance.
Mem Cogn 38:689–699. CrossRef Medline

Singer W (1993) Synchronization of cortical activity and its putative
role in information processing and learning. Annu Rev Physiol
55:349–374. CrossRef Medline

Sohal VS (2016) How close are we to understanding what (if any-
thing) � oscillations do in cortical circuits? J Neurosci 36:10489–
10495. CrossRef Medline

Squire LR, Zola-Morgan S (1991) The medial temporal lobe memory
system. Science 253:1380–1386. Medline

Suthana N, Fried I (2014) Deep brain stimulation for enhancement of
learning and memory. Neuroimage 85:996–1002. CrossRef Med-
line

Suthana N, Haneef Z, Stern J, Mukamel R, Behnke E, Knowlton B,
Fried I (2012) Memory enhancement and deep-brain stimulation of
the entorhinal area. N Engl J Med 366:502–510. CrossRef Medline

Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in
humans and its role in object representation. Trends Cogn Sci
3:151–162. Medline

Tune S, Asaridou SS (2016) Stimulating the semantic network: what
can TMS tell us about the roles of the posterior middle temporal
gyrus and angular gyrus? J Neurosci 36:4405–4407. CrossRef
Medline

Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS,
Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K,
Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y,
Contreras D, Rogers JA, et al. (2011) Flexible, foldable, actively
multiplexed, high-density electrode array for mapping brain activ-
ity in vivo. Nat Neurosci 14:1599–1605. CrossRef Medline

Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J,
Klimke A, Nitsche MA (2014) Induction of self awareness in dreams
through frontal low current stimulation of gamma activity. Nat
Neurosci 17:810–812. CrossRef Medline

Waldert S, Lemon RN, Kraskov A (2013) Influence of spiking activity
on cortical local field potentials. J Physiol 591:5291–5303. Cross-
Ref Medline

Worrell GA, Jerbi K, Kobayashi K, Lina JM, Zelmann R, Le Van Quyen
M (2012) Recording and analysis techniques for high-frequency
oscillations. Prog Neurobiol 98:265–278. CrossRef Medline

Yushkevich PA, Pluta JB, Wang H, Xie L, Ding S-L, Gertje EC,
Mancuso L, Kliot D, Das SR, Wolk DA (2015) Automated volumetry
and regional thickness analysis of hippocampal subfields and
medial temporal cortical structures in mild cognitive impairment.
Hum Brain Mapp 36:258–287. CrossRef Medline

New Research 14 of 14

January/February 2018, 5(1) e0369-17.2018 eNeuro.org

http://www.ncbi.nlm.nih.gov/pubmed/14615081
http://dx.doi.org/10.1093/brain/awu149
http://dx.doi.org/10.1109/TBME.2015.2451596
http://dx.doi.org/10.1093/brain/awx043
http://www.ncbi.nlm.nih.gov/pubmed/28335018
http://dx.doi.org/10.1016/j.pneurobio.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22750156
http://dx.doi.org/10.1523/JNEUROSCI.5049-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/2249872
http://www.ncbi.nlm.nih.gov/pubmed/2249872
http://dx.doi.org/10.1037/h0045106
http://www.ncbi.nlm.nih.gov/pubmed/1869914
http://www.ncbi.nlm.nih.gov/pubmed/16590173
http://www.ncbi.nlm.nih.gov/pubmed/14090522
http://dx.doi.org/10.1146/annurev.neuro.29.051605.112824
http://www.ncbi.nlm.nih.gov/pubmed/16776585
http://dx.doi.org/10.3758/MC.38.6.689
http://www.ncbi.nlm.nih.gov/pubmed/20852233
http://dx.doi.org/10.1146/annurev.ph.55.030193.002025
http://www.ncbi.nlm.nih.gov/pubmed/8466179
http://dx.doi.org/10.1523/JNEUROSCI.0990-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27733600
http://www.ncbi.nlm.nih.gov/pubmed/1896849
http://dx.doi.org/10.1016/j.neuroimage.2013.07.066
http://www.ncbi.nlm.nih.gov/pubmed/23921099
http://www.ncbi.nlm.nih.gov/pubmed/23921099
http://dx.doi.org/10.1056/NEJMoa1107212
http://www.ncbi.nlm.nih.gov/pubmed/22316444
http://www.ncbi.nlm.nih.gov/pubmed/10322469
http://dx.doi.org/10.1523/JNEUROSCI.0194-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/27098684
http://dx.doi.org/10.1038/nn.2973
http://www.ncbi.nlm.nih.gov/pubmed/22081157
http://dx.doi.org/10.1038/nn.3719
http://www.ncbi.nlm.nih.gov/pubmed/24816141
http://dx.doi.org/10.1113/jphysiol.2013.258228
http://dx.doi.org/10.1113/jphysiol.2013.258228
http://www.ncbi.nlm.nih.gov/pubmed/23981719
http://dx.doi.org/10.1016/j.pneurobio.2012.02.006
http://www.ncbi.nlm.nih.gov/pubmed/22420981
http://dx.doi.org/10.1002/hbm.22627
http://www.ncbi.nlm.nih.gov/pubmed/25181316

	Thomas Jefferson University
	Jefferson Digital Commons
	2-2-2018

	Electrical Stimulation Modulates High γ Activity and Human Memory Performance.
	Michal T. Kucewicz
	Brent M. Berry
	Vaclav Kremen
	Laura R. Miller
	Fatemeh Khadjevand
	See next page for additional authors

	Let us know how access to this document benefits you
	Recommended Citation
	Authors


	Electrical Stimulation Modulates High γ Activity and Human Memory Performance
	Introduction
	Materials and Methods
	Study participants
	Anatomic localization and brain surface mapping
	Electrophysiological recordings
	Memory tasks with brain stimulation
	Electrophysiological analysis
	Behavioral analysis
	Statistical analysis

	Results
	Discussion

	References

