5,898 research outputs found

    Perch-type Characteristics of Overwintering Red-tailed Hawks (Buteo jamaicensis) and American Kestrels (Falco sparverius)

    Get PDF
    Red-tailed Hawks (Buteo jamaicensis) and American Kestrels (Falco sparverius) are primarily sitand-wait predators that rely on perches to forage most efficiently. Overwintering Red-tailed Hawks and American Kestrels use available perches (e.g., utility poles and wires, trees, fences, gates, etc.) to hunt for prey items in agricultural fields in northeast Arkansas. Observations were made from December 2011-March 2012 and November 2012-March 2013 in three representative cover-types (short rice stubble, soybean stubble, and fallow areas including roadsides) to determine which perch-types were used by Red-tailed Hawks and American Kestrels. Utility pole crossbeams at an average height of 6.3 m were the main perchtypes used by Red-tailed Hawks, demonstrating the use of man-made structures’. These perches were generally in or near fallow areas or short rice stubble fields. Conversely, American Kestrels usually perched on wires at an average height of 4.9 m, over fallow roadsides’. Fallow areas had high prey density and vegetation cover. Niche separation via differential use of perches may be one factor that allows these raptors to avoid inter-specific competition

    Role of lipoxygenase products in the effects of angiotensin II in the isolated aorta and perfused heart of the rat

    Get PDF
    The objective of this study was to determine whether arachidonate metabolites are involved in the vasoconstrictive effects of angiotensin II in rats. In the isolated perfused heart, dexamethasone (4 mg/kg) significantly suppressed the maximal decreases in coronary flow induced by angiotensin II and vasopressin (reference drug). In the heart, the nonselective lipoxygenase inhibitor nordihydroguaiaretic acid (NDGA, 1 μM) markedly suppressed the angiotensin II-induced decreases in coronary flow. NDGA (10 μM) inhibited both angiotensin II- and methoxamine- (reference drug) induced contractions in aortic rings with (in the presence of L-NAME) and without endothelium. In the heart, the leukotriene synthesis inhibitor MK-886 (0.3 μM) significantly reduced the maximal effects to angiotensin II, but the leukotriene antagonist FPL 55712 (0.1 and 0.3 μM) had no effect. We conclude that in the isolated perfused rat heart angiotensin II-induced decreases in coronary flow are in part mediated by Hpoxygenase products, which might be derived from the 5-Hpoxygenase pathway, but are probably not leukotrienes. Furthermore, endothelium independent Hpoxygenase products mediate part of the contractile responses to angiotensin II in the isolated rat aorta

    Investigation of MicroRNA-134 as a Target against Seizures and SUDEP in a Mouse Model of Dravet Syndrome

    Get PDF
    Dravet syndrome (DS) is a catastrophic form of pediatric epilepsy mainly caused by noninherited mutations in the SCN1A gene. DS patients suffer severe and life-threatening focal and generalized seizures which are often refractory to available anti-seizure medication. Antisense oligonucleotides (ASOs) based approaches may offer treatment opportunities in DS. MicroRNAs are short noncoding RNAs that play a key role in brain structure and function by post-transcriptionally regulating gene expression, including ion channels. Inhibiting miRNA-134 (miR-134) using an antimiR ASO (Ant-134) has been shown to reduce evoked seizures in juvenile and adult mice and reduce epilepsy development in models of focal epilepsy. The present study investigated the levels of miR-134 and whether Ant-134 could protect against hyperthermia-induced seizures, spontaneous seizures and mortality (SUDEP) in F1.Scn1a(1/)tm1kea mice. At P17, animals were intracerebroventricular in-jected with 0.1–1 nmol of Ant-134 and subject to a hyperthermia challenge at postnatal day (P)18. A second cohort of P21 F1.Scn1a(1/)tm1kea mice received Ant-134 and were followed by video and EEG monitoring until P28 to track the incidence of spontaneous seizures and SUDEP. Hippocampal and cortical levels of miR-134 were similar between wild-type (WT) and F1.Scn1a(1/)tm1kea mice. Moreover, Ant-134 had no effect on hyperthermia-induced seizures, spontaneous seizures and SUDEP incidence were unchanged in Ant-134-treated DS mice. These findings suggest that targeting miR-134 does not have therapeutic applications in DS

    SARS-Coronavirus Replication/Transcription Complexes Are Membrane-Protected and Need a Host Factor for Activity In Vitro

    Get PDF
    SARS-coronavirus (SARS-CoV) replication and transcription are mediated by a replication/transcription complex (RTC) of which virus-encoded, non-structural proteins (nsps) are the primary constituents. The 16 SARS-CoV nsps are produced by autoprocessing of two large precursor polyproteins. The RTC is believed to be associated with characteristic virus-induced double-membrane structures in the cytoplasm of SARS-CoV-infected cells. To investigate the link between these structures and viral RNA synthesis, and to dissect RTC organization and function, we isolated active RTCs from infected cells and used them to develop the first robust assay for their in vitro activity. The synthesis of genomic RNA and all eight subgenomic mRNAs was faithfully reproduced by the RTC in this in vitro system. Mainly positive-strand RNAs were synthesized and protein synthesis was not required for RTC activity in vitro. All RTC activity, enzymatic and putative membrane-spanning nsps, and viral RNA cosedimented with heavy membrane structures. Furthermore, the pelleted RTC required the addition of a cytoplasmic host factor for reconstitution of its in vitro activity. Newly synthesized subgenomic RNA appeared to be released, while genomic RNA remained predominantly associated with the RTC-containing fraction. RTC activity was destroyed by detergent treatment, suggesting an important role for membranes. The RTC appeared to be protected by membranes, as newly synthesized viral RNA and several replicase/transcriptase subunits were protease- and nuclease-resistant and became susceptible to degradation only upon addition of a non-ionic detergent. Our data establish a vital functional dependence of SARS-CoV RNA synthesis on virus-induced membrane structures

    Search for the Weak Decay of an H Dibaryon

    Full text link
    We have searched for a neutral HH dibaryon decaying via HΛnH\to\Lambda n and HΣ0nH\to\Sigma^0 n. Our search has yielded two candidate events from which we set an upper limit on the HH production cross section. Normalizing to the inclusive Λ\Lambda production cross section, we find (dσH/dΩ)/(dσΛ/dΩ)<6.3×106(d\sigma_H/d\Omega) / (d\sigma_\Lambda/d\Omega) < 6.3\times 10^{-6} at 90% C.L., for an HH of mass \approx 2.15 GeV/c2c^2.Comment: 11 pages, 6 postscript figures, epsfig, aps, preprint, revte

    Food-induced fatal anaphylaxis: from epidemiological data to general prevention strategies

    Get PDF
    BACKGROUND: Anaphylaxis hospitalisations are increasing in many countries, in particular for medication and food triggers in young children. Food-related anaphylaxis remains an uncommon cause of death, but a significant proportion of these are preventable. AIM: To review published epidemiological data relating to food-induced anaphylaxis and potential risk factors of fatal and/or near-fatal anaphylaxis cases, in order to provide strategies to reduce the risk of severe adverse outcomes in food anaphylaxis. METHODS: We identified 32 published studies available in MEDLINE (1966-2017), EMBASE (1980-2017), CINAHL (1982-2017), using known terms and synonyms suggested by librarians and allergy specialists. RESULTS: Young adults with a history of asthma, previously known food allergy particularly to peanut/tree nuts are at higher risk of fatal anaphylaxis reactions. In some countries, cow's milk and seafood/fish are also becoming common triggers of fatal reactions. Delayed adrenaline injection is associated with fatal outcomes, but timely adrenaline alone may be insufficient. There is still a lack of evidence regarding the real impact of these risk factors and co-factors (medications and/or alcohol consumption, physical activities, and mast cell disorders). CONCLUSIONS: General strategies should include optimization of the classification and coding for anaphylaxis (new ICD 11 anaphylaxis codes), dissemination of international recommendations on the treatment of anaphylaxis, improvement of the prevention in food and catering areas and, dissemination of specific policies for allergic children in schools. Implementation of these strategies will involve national and international support for ongoing local efforts in relationship with networks of centres of excellence to provide personalized management (which might include immunotherapy) for the most at-risk patients. This article is protected by copyright. All rights reserved

    Radiation Hardness Studies in a CCD with High-Speed Column Parallel Readout

    Full text link
    Charge Coupled Devices (CCDs) have been successfully used in several high energy physics experiments over the past two decades. Their high spatial resolution and thin sensitive layers make them an excellent tool for studying short-lived particles. The Linear Collider Flavour Identification (LCFI) collaboration is developing Column-Parallel CCDs (CPCCDs) for the vertex detector of the International Linear Collider (ILC). The CPCCDs can be read out many times faster than standard CCDs, significantly increasing their operating speed. The results of detailed simulations of the charge transfer inefficiency (CTI) of a prototype CPCCD are reported and studies of the influence of gate voltage on the CTI described. The effects of bulk radiation damage on the CTI of a CPCCD are studied by simulating the effects of two electron trap levels, 0.17 and 0.44 eV, at different concentrations and operating temperatures. The dependence of the CTI on different occupancy levels (percentage of hit pixels) and readout frequencies is also studied. The optimal operating temperature for the CPCCD, where the effects of the charge trapping are at a minimum, is found to be about 230 K for the range of readout speeds proposed for the ILC. The results of the full simulation have been compared with a simple analytic model.Comment: 3 pages, 6 figures; presented at IEEE'07, ALCPG'07, ICATPP'0

    Antagomir-mediated suppression of microRNA-134 reduces kainic acid-induced seizures in immature mice

    Get PDF
    MicroRNAs are short non-coding RNAs that negatively regulate protein levels and perform important roles in establishing and maintaining neuronal network function. Previous studies in adult rodents have detected upregulation of microRNA-134 after prolonged seizures (status epilepticus) and demonstrated that silencing microRNA-134 using antisense oligonucleotides, termed antagomirs, has potent and long-lasting seizure-suppressive effects. Here we investigated whether targeting microRNA-134 can reduce or delay acute seizures in the immature brain. Status epilepticus was induced in 21 day-old (P21) male mice by systemic injection of 5 mg/kg kainic acid. This triggered prolonged electrographic seizures and select bilateral neuronal death within the CA3 subfield of the hippocampus. Expression of microRNA-134 and functional loading to Argonaute-2 was not significantly changed in the hippocampus after seizures in the model. Nevertheless, when levels of microRNA-134 were reduced by prior intracerebroventricular injection of an antagomir, kainic acid-induced seizures were delayed and less severe and mice displayed reduced neuronal death in the hippocampus. These studies demonstrate targeting microRNA-134 may have therapeutic applications for the treatment of seizures in children

    Operational experience, improvements, and performance of the CDF Run II silicon vertex detector

    Full text link
    The Collider Detector at Fermilab (CDF) pursues a broad physics program at Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and the end of operations in September 2011, the Tevatron delivered 12 fb-1 of integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics analyses undertaken by CDF require heavy flavor tagging with large charged particle tracking acceptance. To realize these goals, in 2001 CDF installed eight layers of silicon microstrip detectors around its interaction region. These detectors were designed for 2--5 years of operation, radiation doses up to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were not replaced, and the Tevatron run was extended for several years beyond its design, exposing the sensors and electronics to much higher radiation doses than anticipated. In this paper we describe the operational challenges encountered over the past 10 years of running the CDF silicon detectors, the preventive measures undertaken, and the improvements made along the way to ensure their optimal performance for collecting high quality physics data. In addition, we describe the quantities and methods used to monitor radiation damage in the sensors for optimal performance and summarize the detector performance quantities important to CDF's physics program, including vertex resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods A (07/31/2013
    corecore