53 research outputs found

    Impact of Long-Term Exposure to Wind Turbine Noise on Redemption of Sleep Medication and Antidepressants: A Nationwide Cohort Study

    Get PDF
    Background: Noise from wind turbines (WTs) is associated with annoyance and, potentially, sleep disturbances. Objectives: Our objective was to investigate whether long-term WT noise (WTN) exposure is associated with the redemption of prescriptions for sleep medication and antidepressants. Methods: For all Danish dwellings within a radius of 20-WT heights and for 25% of randomly selected dwellings within a radius of 20-to 40-WT heights, we estimated nighttime outdoor and low-frequency (LF) indoor WTN, using information on WT type and simulated hourly wind. During follow-up from 1996 to 2013, 68,696 adults redeemed sleep medication and 82,373 redeemed antidepressants, from eligible populations of 583,968 and 584,891, respectively. We used Poisson regression with adjustment for individual and area-level covariates. Results: Five-year mean outdoor nighttime WTN of ≄42 dB was associated with a hazard ratio (HR) = 1.14 [95% confidence interval (CI]: 0.98, 1.33) for sleep medication and HR = 1.17 (95% CI: 1.01, 1.35) for antidepressants (compared with exposure to WTN of ˂24 dB). We found no overall association with indoor nighttime LF WTN. In age-stratified analyses, the association with outdoor nighttime WTN was strongest among persons ≄65y of age, with HRs (95% CIs) for the highest exposure group (≄42 dB) of 1.68 (1.27, 2.21) for sleep medication and 1.23 (0.90, 1.69) for antidepressants. For indoor nighttime LF WTN, the HRs (95% CIs) among persons ≄65y of age exposed to ≄15 dB were 1.37 (0.81, 2.31) for sleep medication and 1.34 (0.80, 2.22) for antidepressants. Conclusions: We observed high levels of outdoor WTN to be associated with redemption of sleep medication and antidepressants among the elderly, suggesting that WTN may potentially be associated with sleep and mental health.</p

    Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

    Get PDF
    BACKGROUND: Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES: The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. METHODS: We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. RESULTS: When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p < 0.05) and found them to occur at similar frequencies, as stated by the manufacturer and in the literature. We showed that drugs displaying similar ADR profiles share targets, and we compared submitted spontaneous AE reports with our findings. For nine of the ten most prescribed antipsychotics in the patient population, larger doses were prescribed to sedated patients than non-sedated patients; five patients exhibited a significant difference (p < 0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). CONCLUSIONS: The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-014-0145-z) contains supplementary material, which is available to authorised users

    Falls in the general elderly population: a 3- and 6- year prospective study of risk factors using data from the longitudinal population study 'Good ageing in Skane'.

    Get PDF
    Accidental falls in the elderly are a major health problem, despite extensive research on risk factors and prevention. Only a limited number of multifactorial, long-term prospective studies have been performed on risk factors for falls in the general elderly population. The aim of this study was to identify risk factors predicting falls in a general elderly population after three and six years, using a prospective design
    • 

    corecore