278 research outputs found

    Controls on halogen concentrations in sedimentary formation waters

    Get PDF
    AbstractChlorine is the most abundant halogen in sedimentary formation waters with concentrations from &lt;100 to &gt;250000 mg/l. Bromine is the second most abundant halogen at &lt;1 mg/l to &gt;6000 mg/l with iodine from &lt;0.1 mg/l to &gt;100 mg/l and fluorine from &lt;0.1 mg/l to 30 mg/l. Chlorine and bromine show a strong systematic covariation suggesting that they are subject to the same controlling mechanisms. Fluorine only shows relatively high concentrations at elevated chlorine and bromine concentrations showing that fluorine, chlorine and bromine are possibly controlled by the same processes. Iodine does not correlate with any of the other halogens indicating that unique processes control iodine.Key geological parameters that influence chlorine and bromine (and possibly fluorine) concentrations are the presence of salt in a basin, the age of the reservoir unit and the kerogen-type within the main hydrocarbon source rock in a basin. The presence of salt in a basin shows that sea water was evaporated to halite saturation producing connate waters with high concentrations of chlorine and bromine. The presence of salt also leads to high salinity waters through water-salt interaction during burial and diagenesis. Tertiary reservoirs typically have much lower chlorine and bromine concentrations than Mesozoic or Palaeozoic reservoirs. The age of the reservoir unit may simply reflect the different amounts of time available for formation water to interact with salt. The dominance of type II marine kerogen in a basin leads to higher bromine concentrations. This may reflect the dominance of a marine influence in a basin which is more likely to lead to salt deposition than terrestrial depositional environments. Iodine concentrations are independent of all these parameters. Other geological parameters such as depth of burial, temperature, basin forming mechanism and reservoir lithology have no influence upon halogen concentrations.Key processes that affect halogen concentrations are sea water evaporation and dilution, waterā€”salt interaction and input from organic sources. Chlorine and bromine data lie close to the experimentally-derived sea water evaporation trend showing that sea water evaporation may be an important general control on halogens. Sea water dilution is probably responsible for most low salinity formation water chlorine and bromine concentrations for the same reason. Sea water dilution can occur either by meteoric invasion during burial, or following uplift and erosion, or by diagenetic dehydration reactions. Water can interact with salt in a variety of ways: halite dissolution by congruent processes, halite recrystallization by incongruent processes, sylvite dissolution or recrystallization and halite fluid inclusion rupture. Halite dissolution will lead to high chlorine and relatively low bromine waters because halite contains little bromine. In contrast, halite recrystallization will lead to bromine-enhanced waters because NaBr dissolves preferentially to NaCl. The occurrence of dissolution or recrystallization will depend on the water rock ratio, greater volumes of water will lead to more dissolution and waters with higher Cl/Br ratios. Sylvite is usually rich in bromine so dissolution will lead to bromine-enhanced waters. Primary aqueous inclusions in halite contain high bromine concentrations so that rupture, during deformation or recrystallization, will lead to bromine-enhanced formation water. A combination of these processes are responsible for the very limited range of Cl/Br ratios although congruent halite dissolution must have a limited role due to the absence of waters with high Cl/Br ratios.Iodine is strongly concentrated in organic materials in the marine environment; oils and organic rich-source rocks have high I/Cl and I/Br ratios relative to sea water or evaporated sea water. All formation waters are enriched in iodine relative to sea water implying that there has been input from organic matter or interaction with oil. However, hydrocarbon source rock type in a basin has no discernible effect upon iodine concentrations.</jats:p

    Carbon Dioxide Capture and Storage (CCS) in Saline Aquifers versus Depleted Gas Fields

    Get PDF
    Saline aquifers have been used for CO2 storage as a dedicated greenhouse gas mitigation strategy since 1996. Depleted gas fields are now being planned for large-scale CCS projects. Although basalt host reservoirs are also going to be used, saline aquifers and depleted gas fields will make up most of the global geological repositories for CO2. At present, depleted gas fields and saline aquifers seem to be treated as if they are a single entity, but they have distinct differences that are examined here. Depleted gas fields have far more pre-existing information about the reservoir, top-seal caprock, internal architecture of the site, and about fluid flow properties than saline aquifers due to the long history of hydrocarbon project development and fluid production. The fluid pressure evolution paths for saline aquifers and depleted gas fields are distinctly different because, unlike saline aquifers, depleted gas fields are likely to be below hydrostatic pressure before CO2 injection commences. Depressurised depleted gas fields may require an initial injection of gas-phase CO2 instead of dense-phase CO2 typical of saline aquifers, but the greater pressure difference may allow higher initial injection rates in depleted gas fields than saline aquifers. Depressurised depleted gas fields may lead to CO2-injection-related stress paths that are distinct from saline aquifers depending on the geomechanical properties of the reservoir. CO2 trapping in saline aquifers will be dominated by buoyancy processes with residual CO2 and dissolved CO2 developing over time whereas depleted gas fields will be dominated by a sinking body of CO2 that forms a cushion below the remaining methane. Saline aquifers tend to have a relatively limited ability to fill pores with CO2 (i.e., low storage efficiency factors between 2 and 20%) as the injected CO2 is controlled by buoyancy and viscosity differences with the saline brine. In contrast, depleted gas fields may have storage efficiency factors up to 80% as the reservoir will contain sub-hydrostatic pressure methane that is easy to displace. Saline aquifers have a greater risk of halite-scale and minor dissolution of reservoir minerals than depleted gas fields as the former contain vastly more of the aqueous medium needed for such processes compared to the latter. Depleted gas fields have some different leakage risks than saline aquifers mostly related to the different fluid pressure histories, depressurisation-related alteration of geomechanical properties, and the greater number of wells typical of depleted gas fields than saline aquifers. Depleted gas fields and saline aquifers also have some different monitoring opportunities. The high-density, electrically conductive brine replaced by CO2 in saline aquifers permits seismic and resistivity imaging, but these forms of imaging are less feasible in depleted gas fields. Monitoring boreholes are less likely to be used in saline aquifers than depleted gas fields as the latter typically have numerous pre-existing exploration and production well penetrations. The significance of this analysis is that saline aquifers and depleted gas fields must be treated differently although the ultimate objective is the same: to permanently store CO2 to mitigate greenhouse gas emissions and minimise global heating.</jats:p

    Porosity in mudstones and its effectiveness for sealing carbon capture and storage sites

    Get PDF
    Abstract Mudstones represent top-seals for many carbon capture sites as they tend to have the correct petrophysical properties, including suitable porosity and pore-size distribution. The pore network of mudstones is thus pivotal for many carbon capture and storage (CCS) projects. The key to understanding the effectiveness of top-seals is an appreciation of the controls on the pore network. For this reason, schemes to classify pore body size, pore type and pore throat size are presented. Pore types include primary and secondary interparticle and intraparticle pores and pores associated with organic matter and fractures. The most relevant mudstone pore body sizes for CCS top seals are likely to be between &lt;62 Āµm and 1 nm. Pore throat sizes are classified as nano- (&lt;10 nm), transition- (10 nmā€“0.1 Āµm), meso- (0.1ā€“0.625 Āµm), and macro-pore throats (&gt;0.625 Āµm). Petrophysical, geochemical, and geomechanical properties control porosity and the CO 2 sealing integrity of mudstones; these properties are, in turn, controlled by the rate and extent of compaction, mineral diagenesis and overpressure. The success of a CCS top-seal relies on pore throats in intact top-seal being sufficiently small, and fracture pressure (typically minimum horizontal stress, Ļƒ hmin ) not being exceeded by CO 2 pressure. CO 2 sorption, especially by smectite in top-seals, may improve the nanoscale sealing efficiency of clay minerals. The systematic workflow presented here will help facilitate the new drive to understand mudstone properties, as they are essential for establishing safe and durable CO 2 containment. </jats:p

    The effect of oil emplacement on quartz cementation in a deeply buried sandstone reservoir

    Get PDF

    Sedimentology and microfacies of a mud-rich slope succession: in the Carboniferous Bowland Basin, NW England (UK)

    Get PDF
    A paucity of studies on mud-rich basin slope successions has resulted in a significant gap in our sedimentological understanding in these settings. Here, macro- and micro-scale analysis of mudstone composition, texture and organic matter was undertaken on a continuous core through a mud-dominated slope succession from the Marl Hill area in the Carboniferous Bowland Basin. Six lithofacies, all dominated by turbidites and debrites, combine into three basin slope facies associations: sediment-starved slope, slope dominated by low-density turbidites and slope dominated by debrites. Variation in slope sedimentation was a function of relative sea-level change, with the sediment-starved slope occurring during maximum flooding of the contemporaneous shelf, and the transition towards a slope dominated by turbidites and then debrites occurring during normal or forced shoreline progradation towards the shelf margin. The sediment-starved slope succession is dominated by Type II kerogen, whereas the slope dominated by low-density turbidites is dominated by Type III kerogen. This study suggests that mud-dominated lower slope settings are largely active depositional sites, with consistent evidence for sediment traction. Additionally, the composition and texture of basin slope mudstones, as well as organic content, vary predictably as a function of shelf processes linked to relative sea-level change

    Sulfur Cycling During Progressive Burial in Sulfateā€Rich Marine Carbonates

    Get PDF
    Abstract The isotopic composition of sulfate in the rock record has been frequently used to track the changes in the Earth's surface environments. By considering isotopic fractionation imparted by microbial sulfate reduction (MSR) and thermochemical sulfate reduction (TSR), in this study, we aim to develop a holistic understanding of the mixed effects of MSR and TSR on Ī“34S signals in sulfateā€rich carbonate systems. We report the occurrence of various types of sulfurā€bearing components from the Cambrianā€Ordovician carbonate system in the Tarim Basin, NW China, coupled with a wellā€established diagenesis framework for these rocks. Our results indicate that most of the sulfurā€bearing species possess Ī“34S values slightly lower than both the source sulfate and the sulfide generated by TSR, yet these sulfurā€bearing species have substantially higher Ī“34S values than sulfide that resulted from MSR. Hence, a combination of sulfides sourced from MSR and TSR can adequately explain the sulfur isotope data in the studied interval. Building upon this hypothesis, we developed a new sulfur diagenesis model in order to quantify the accumulated H2S from the combined effects of MSR and TSR. Our new model can be used to explain the origin of sulfurā€bearing species in many other deep burial carbonate systems, including the Sichuan Basin, China, and the Gulf of Mexico, USA. We propose that greater attention should be paid to isotopic modulation through mixed diagenetic processes in order to gain a better mechanistic understanding of the primary geochemistry signals (e.g., Ī“34S) in marine carbonates
    • ā€¦
    corecore