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Abstract: Deformation bands significantly alter the local petrophysical properties of sandstone
reservoirs, although it is not known how the intrinsically variable characteristics of sandstones
(e.g. grain size, sorting and mineralogy) influence the nature and distribution of deformation
bands. To address this, cataclastic deformation bands within fine- and coarse-grained Triassic
Sherwood Sandstone at Thurstaston, UK were analysed, for the first time, using a suite of petro-
graphical techniques, outcrop studies, helium porosimetry and image analysis. Deformation bands
are more abundant in the coarse-grained sandstone than in the underlying fine-grained sandstone.
North- and south-dipping conjugate sets of cataclastic bands in the coarse-grained sandstone
broadly increase in density (defined by number/m2) when approaching faults. Microstructural
analysis revealed that primary grain size controls deformation band density. Deformation bands
in both coarse and fine sandstones led to significantly reduced porosity, and so can represent bar-
riers or baffles to lateral fluid flow. Microstructural data show preferential cataclasis of K-feldspar
grains within the host rock and deformation band. The study is of direct relevance to the prediction
of reservoir quality in several petroleum-bearing Lower Triassic reservoirs in the near offshore, as
deformation band development occurred prior to Carboniferous source-rock maturation and
petroleum migration.
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The oil and gas industry has expressed a grow-
ing interest in deformation bands because they are
subseismic, tabular zones of strain localization that
can cause large changes to a reservoir’s petrophys-
ical properties (Ballas et al. 2013). Examples of
permeability alteration include the Clair Field,
west of Shetland, UK, where deformation bands
provide a conduit to lateral fluid flow during the
early stages of deformation band formation that
initially increased porosity (Baron et al. 2008).
At the Anschutz Ranch East Field, Wyoming,
USA, deformation bands separate clean sandstones
and bitumen-stained sandstones, implying a strong
impact on oil and gas movement (Solum et al. 2010).
At the Arroyo Grande Field, California, USA, steam
conductivity parallel to deformation bands is
reported to be nine times higher than conductivity
perpendicular to deformation bands, with tar depos-
its present on only one side of the deformation bands
(Solum et al. 2010). Data presented in this study
could potentially maximize near-term production
targets in the Morecambe, Hamilton, Douglas and
Lennox oil and gas fields within the neighbouring
East Irish Sea Basin.

Millimetres to centimetres in width, with lengths
of several metres or more (Schultz & Soliva 2012),
deformation bands have been kinematically classi-
fied as one of three end members, namely: dilation
bands (pore volume increase); shear bands (pore
volume increase, decrease or no change); or com-
paction bands (pore volume decrease) (Aydin et al.
2006; Torabi 2014). Deformation bands in this
study will be classified by the predominant defor-
mation mechanism: disaggregation; phyllosilicate
smear; cataclasis; and solution and cementation
(Fossen et al. 2007).

Disaggregation bands form due to shear-induced
disaggregation of grains by grain rolling, grain-
boundary sliding and the breakage of cements bond-
ing grains, but show little or no evidence of grain
crushing (Schultz et al. 2010). Phyllosilicate bands
form in sandstones which contain .10–15% platy
minerals, and ‘deformation bands with clay smear-
ing’ form in sandstones which have a clay con-
tent .40% (Fisher & Knipe 2001; Cerveny et al.
2004; Fossen et al. 2007). Mechanical grain fractur-
ing is the dominant process in cataclastic bands,
where compaction and reorganization of broken
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grains significantly reduces porosity (Cerveny et al.
2004; Fossen 2010). Solution bands are produced
when chemical compaction, or pressure solution,
is the dominant process; they commonly form at
shallow depths and contain minimal cataclasis (Fos-
sen et al. 2007). Fresh mineral surfaces exposed by
grain-boundary sliding and/or grain crushing pro-
vide preferential sites for cementation, thus creating
cementation bands (Fossen et al. 2007).

The primary aim of this paper is to establish how
intrinsic host-rock properties (grain size, grain size
distribution, porosity and mineralogy) control the
nature and distribution of deformation bands. Using
a range of petrographical techniques, image ana-
lysing software and field techniques, this paper
will address the following specific questions, using
examples of deformation bands for the first time
from Thurstaston, Wirral, UK (Lower Triassic Sher-
wood Sandstone Group):

† What types of deformation band are present at
Thurstaston?

† What is the spatial relationship between defor-
mation band density and fault proximity?

† What is the relationship between the nature of
deformation bands and the instrinsic host-rock
properties?

† What is the potential impact of the presence of
deformation bands in nearby reservoirs in the
same lithology?

Geological setting

Early Permian rifting formed a predominantly
north–south-orientated asymmetrical half-graben,
deepening towards the east (Mikkelsen & Flood-
page 1997). The Cheshire Basin (Fig. 1a) formed
in the hanging wall of the Wem–Red Rock Fault
(Knott 1994; Beach et al. 1997; Mikkelsen & Flood-
page 1997), a northerly continuation of the Permo-
Triassic rift system (Rowe & Burley 1997) that
extended from the Wessex Basin to the Scottish
Inner Hebrides. Thermal subsidence prolonged rift-
ing until the mid-Triassic, with normal faulting dur-
ing the early Triassic and Jurassic modifying the
basin morphology. Tertiary contraction generated
uplift of up to 1500 m (Knott 1994; Beach et al.
1997; Ware & Turner 2002), with intra-Triassic
uplift resulting in 700–900 m of erosion (Mikkelsen
& Floodpage 1997; Rowley & White 1998; Ware &
Turner 2002).

Potential organic-rich Carboniferous source-
rock sediments (Mikkelsen & Floodpage 1997) in
the Cheshire Basin are overlain unconformably by
the Permian Collyhurst Sandstone, Manchester Marl
and the Kinnerton Sandstone (Rowe & Burley
1997). The Sherwood Sandstone Group (the focus
of this study) overlies the Permian sediments, and

is a 1500 m-thick succession composed of the
Cheshire Pebble Beds Formation, the Wilmslow
Sandstone Formation and the Helsby Sandstone For-
mation (Rowe & Burley 1997). The UK migrated
from approximately 108 to 308 N of the equator dur-
ing the Permo-Triassic (Tellam & Barker 2006).

Fig. 1.
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(a) A simplified geological map of the Cheshire
and East Irish Sea basins (edited from Meadows 2006).
(b) The geology of Thurstaston and the locations used
in this study: Telegraph Road (1) and Thurstaston
Common (2). Maps adapted from Lexicon of Named
Rock Units [XLS geospatial data], Scale 1:50000,
Tiles: GB, Version 2011, British Geological Survey,
UK. Using: EDINA Geology Digimap Service, http://
digimap.edina.ac.uk, downloaded April 2013.
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The depositional environment of the Sherwood
Sandstone Group in the Cheshire Basin was mixed
aeolian and fluvial. The Triassic river systems
flowed NW from the Cheshire Basin into the East
Irish Sea Basin (Meadows 2006). Post-Triassic
successions have been removed across most of the
Cheshire Basin following Cretaceous and Ter-
tiary uplift; the youngest deposits (Pre-Quaternary)
within the Cheshire Basin are middle Liassic (Rowe
& Burley 1997). Meadows (2006) provided a syn-
thesis of existing stratigraphic nomenclature applied
to the Early and Middle Triassic Sherwood Sand-
stone Group in NW England, including East Irish
Sea Basin equivalent units based on well correlations
that contain various oil and gas discoveries (Knott
1994; Meadows 2006).

Methods

Data were collected from the Cheshire Basin within
the Sherwood Sandstone Group at Thurstaston
(Fig. 1), on the western side of the Wirral peninsula,
7 km SW of Birkenhead. The presence of deforma-
tion bands at Thurstaston has been documented
(Knott 1994; Beach et al. 1997); however; this
paper provides the first detailed analysis of deforma-
tion band distribution, as well as a petrographical
description and interpretation.

Field data

The outcrop of Lower Triassic Wilmslow Sand-
stone Formation at Thurstaston (Beach et al. 1997),
composed of aeolian dune and interdune strata,
provides world-class examples of sandstone defor-
mation bands. The Thurstaston Sandstone Mem-
ber is incorporated within the Wilmslow Sandstone
Formation in this study following the most recent
pronouncement on the Sherwood Sandstone from
the British Geological Society (see Meadows
2006 and references therein). Spatial relationships
between Lower Triassic aeolian dune and inter-
dune facies have been well documented within
the Cheshire Basin, UK (Mountney & Thompson
2002; Mountney 2012). Two outcrop locations
(Fig. 1b) provide a three-dimensional view of the
deformation bands:

† Location 1 – Telegraph Road (Figs 2a & 3a),
contains conjugate sets of deformation bands
within the damage zone of three slip surfaces.
The orientation, density and thickness of defor-
mation bands were recorded with proximity to
three slip surfaces (over a 5 m linear scanline
perpendicular to faulting), within fine-grained
(mean grain size of c. 170 mm) and overlying
coarse-grained sandstone (mean grain size of
c. 540 mm).

† Location 2 – Thurstaston Common (Figs 2b &
4), allowed for a more extensive study of the
relationship between slip surface proximity and
deformation band density within coarse-grained
sandstone.

Two 30 m linear north–south transects (approxi-
mately perpendicular to the strike of the major slip
surface) allowed for measurements of fault and
deformation band density, spacing and orientation.
Using a collection of field photographs covering
approximately 1 m2 of exposure subparallel to bed-
ding, the anastomosing geometry of the deformation
bands was captured in detail.

Host-rock grain size and grain-size distribu-
tion data were collected using a Beckman Coulter
LS13 320 Laser Diffraction Particle Size Ana-
lyser (LPSA) for five undeformed coarse- and fine-
grained sandstone samples. Owing to the friable
nature of both the fine- and coarse-grained sand-
stones, samples required only gentle disaggregation
by hand, and this was analysed under an optical
microscope to ensure full disaggregation. As histo-
grams are sensitive to bin selection, sorting was
defined by the gradient of cumulative frequency
curves (Cheung et al. 2012). Grain-size range was
calculated by D90–D10. D90 is the grain size at the
upper bound of the 90% fraction, whereas D10 is
the grain size at the upper bound of the finest 10%
fraction. X-ray diffractograms generated from
PANalytical X’pert Pro MPD X-ray diffractometer
(XRD) quantified mineralogy of both the host rock
and the deformation bands within the fine- and
coarse-grained sandstones layers.

Microstructural characteristics and

petrophysical properties

Orientated samples were sectioned along a north–
south plane in order to reveal depositional and dia-
genetic features, prior to vacuum impregnation with
blue epoxy resin to reduce friability and to highlight
porosity. A Meiji 9000 optical microscope fitted
with an Infinity 1.5 camera with Infinity Analyser
software was used to carry out an initial reconnais-
sance of polished thin sections. Secondary electron
images (SE) were collected using a Philips XL30
SEM equipped with an Oxford Instruments Sec-
ondary X-ray detector from gold–palladium-coated
deformation bands and host rock. Backscattered
electron images (BSE) were collected using a Hita-
chi (TM3000) scanning electron microscope (SEM)
and Philips XL30 SEM. Using a Philips XL30 SEM
equipped with a K.E. Developments Ltd catho-
doluminescence (CL) detector (D308122), SEM-
CL images were obtained at 10 kV and spot size
7. SEM-CL images took up to 25 min to collect
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and were gathered by integrating the signal of 16
frames using a slow scanning raster.

Helium porosimetry was used to calculate poros-
ity within the undeformed host rock of both the
fine- and coarse-grained sandstone (two core plugs
per sandstone). Owing to the friable nature of both
sandstones, the core plugs used for the helium
porosimetry were not perfectly cylindrical, result-
ing in a porosity error margin of 4%. Porosity

heterogeneity at a deformation band scale (typi-
cally ,1 mm) cannot be captured on the scale of
a core plug (c. 25 mm in diameter) and, instead, a
petrographical image analysis is typically used
(Antonellini et al. 1994). It should also be noted
that porosity values documented within the litera-
ture using helium porosimetry are typically higher
than those calculated using digital image analysis
(Anselmetti et al. 1998; Ogilvie et al. 2001). In

Fig. 2.
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(a) Deformation bands confined to the coarse-grained sandstone at Telegraph Road. (b) Deformation bands
at Thurstaston Common showing a positive relief. (c) Grain-size analysis of both the fine- and coarse-grained
sandstone at Telegraph Road. (d) XRD-determined mineralogy of both the fine- and coarse-grained sandstone at
Telegraph Road.
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order to calculate porosity within the deformation
band and host rock, BSE images (converted to an
8-bit format) have been digitized in ImageJ Analy-
ser (Schneider et al. 2012), creating an array of pix-
els that are assigned a grey-level intensity. Pixel
segmentation was then undertaken using a thresh-
olding formula in which black pixels (porosity)
and grey pixels (host rock) were differentiated,
allowing for the quantification of total optical poros-
ity. Fifteen images (with varying fields of view
ranging from c. 0.25 to 1.00 mm2) have been ana-
lysed for both fine- and coarse-grained sandstone
(i.e. for both the undeformed host rock and deforma-
tion band) to ensure accurate results (Ehrlich et al.
1991).

Results

Field data

Host-rock properties. Laser particle size analyser
and X-ray diffraction data are displayed in Figure
2. Both the coarse-grained sandstone (mean grain
size of c. 540 mm) and the underlying fine-grained
sandstone (mean grain size of c. 170 mm) are

moderately sorted, with a grain size range of
approximately 325 and 340 mm, respectively (Fig.
2c). Minor fining-upward sequences (medium to
coarse grained) are present within the overlying
cross-stratified foresets of the coarse-grained sand-
stone (aeolian facies). However, the majority of any
pre-existing primary depositional structures are no
longer recognizable owing to intense deformation.
The underlying fine-grained sandstone (interdune
facies) exhibits subhorizontal, centimetre-scale,
wavy sandstone laminae with negligible change
in grain size both temporally and spatially. X-ray
diffraction analysis of the coarse-grained sandstone
identified a dominance of quartz (96%), a small
quantity of K-feldspar (4–5%) and a trace of illite.
X-ray diffraction analysis of the fine-grained sand-
stone produced a slightly lower percentage of quartz
(83%), and an increase in K-feldspar (11%) and
illite (6–7%). In all tested samples, there is a negli-
gible difference in the mineralogy (and mineral
abundances) of the deformation band and the host
rock. The coarse-grained sandstone is classified
as a quartz arenite and the fine-grained sandstone
is classified as a subarkosic sandstone (Fig. 2d)
according the QFR classification (Folk et al. 1970).

Fig. 3.
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Outcrop at Telegraph Road. (a) White lines illustrate the position of the normal faults. The majority of
deformation bands end abruptly at the boundary between the overlying coarse-grained quartz arenite and the
underlying fine-grained subarkose sandstone. (b) Density of deformation bands with proximity to slip surfaces (SS).
(c) Stereonet representation of the orientation of deformation bands (n refers to the number of measurements).
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Fault kinematics and deformation band distribu-
tion. The Wilmslow Sandstone Formation (Thur-
staston Sandstone Member) at Telegraph Road
(Fig. 3a) is faulted by three WNW-trending, high-
angle (.808), north-dipping, normal faults (with
respect to bedding), with striations suggesting a
minor component of right-oblique slip. Slip surface
1 (SS 1) has an offset of 64 cm, slip surface 2 (SS 2)
of 19.5 cm and slip surface 3 (SS 3) of 7 cm: all are
subperpendicular to the main NE-trending Formby
Point Fault (Fig. 1a) that extends many kilometres
northwards, forming a bounding fault to the Len-
nox oilfield (Yaliz & Chapman 2003). A north-
and south-dipping conjugate set (an acute angle of
c. 558) of deformation bands display an east–west
orientation at both Telegraph Road and Thurstaston
Common, parallel to faulting (Figs 3c & 4d). Defor-
mation bands are sporadic within the underlying
fine-grained subarkosic sandstone beds and form in
swarms within the overlying coarse-grained quartz-
arenite sandstone (Fig. 3). Deformation bands are

largely confined to the overlying coarse-grained
sandstone, and commonly end abruptly at the fine-
grained sandstone boundary (Fig. 2a). Deformation
bands range from 0.05 mm to 1.2 cm in width, dis-
playing mm-scale offset. The relationship between
deformation band density and fault proximity at
Telegraph Road is displayed in Figure 3b. Deforma-
tion bands broadly increase in density with proxim-
ity to the faults. There is no obvious correlation
between deformation band density and the magni-
tude of fault offset.

Slip surfaces observed at Thurstaston Com-
mon (Fig. 4) are a continuation of the high-angle
WNW-trending faults that can be observed in cross-
section at Telegraph Road (Figs 1b & 3). Where slip
planes have initiated and offset has occurred, defor-
mation bands tend to localize and orientate in broad
zones in proximity to the slip planes. The anastomos-
ing map pattern of the deformation bands (Fig. 4a),
as well as the linkage structures (Fig. 4c), can be
recognized at the mm- to cm-scale.

Fig. 4.
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Outcrop at Thurstaston Common. (a) Map of the zones of deformation bands. (b) Plan view of deformation
bands surrounding a slip surface. (c) Linkage structure indicating a strong shear component. (d) Stereonet
representation of the orientation of deformation bands (n refers to the number of measurements). (e) Density of
deformation bands with proximity to slip surfaces (SS).
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Microstructures and petrophysical

properties

At both study sites (Telegraph Road and Thurs-
taston Common), deformation bands are classified
as cataclastic bands, with the mechanical fractur-
ing of grains being the predominant deformation

mechanism. Secondary electron images (Fig. 5a–
c) highlight the friable nature of weakly quartz-
cemented host-rock grains and intense localized
cataclasis, limited to the deformation band core,
within the overlying coarse-grained sandstone.
Cathodoluminescence images (Fig. 5e) reveal Her-
tzian grain–grain interaction, with the deformation

Fig. 5. Deformation bands within the coarse-grained quartzarenite (bandwidth is inferred by the dashed white lines).
(a)–(c) Secondary electron images illustrating the strain localization, poorly cemented host rock and intense
cataclasis within the deformation band core. (d) BSE image of the deformation band and host rock. (e) Collated CL
images revealing quartz cementation of the deformation band core and Hertzian fractures.
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band core composed of interlocking, fragmented
quartz grains cemented by quartz.

The fine-grained host rock is moderately
cemented (Fig. 6b), with pore-filling quartz reduc-
ing friability; localized comminution of grains
produces a deformation band core composed of
interlocking detrital clast fragments (Fig. 6c). K-
feldspar is preferentially fractured (Fig. 6d–f)

within both the deformation band core and the
proximal host rock, indicating a strong shear com-
ponent with a K-feldspar grain being entrained
into the deformation band (Fig. 6f). The unde-
formed host-rock porosity for coarse- and fine-
grained sandstone using helium porosimetry is
32 and 15%, respectively. Mean porosity data cal-
culated using image analysis are as follows: the

Fig. 6. Deformation bands within the fine-grained subarkosic sandstone (band width is inferred by the dashed white
lines). (a)–(c) Secondary electron images depicting strain localization and grain comminution within the
deformation band core, surrounded by a moderately cemented host rock (circled in white). (d)–(f) BSE images
showing preferential fracturing of K-feldspar within the host rock and deformation band core. A strong shear
component is indicated by the entrainment of K-feldspar into the deformation band core.
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undeformed host-rock porosity of coarse-grained
sandstone (Fig. 7a) is 26%; porosity has been
reduced to 10% within the deformation band core
in the coarse sandstones (Fig. 7a); undeformed
host-rock porosity for the fine-grained sandstone
(Fig. 7b) is 10%; porosity has been reduced to 4%
within the deformation band core in the fine sand-
stones (Fig. 7b).

Discussion

Deformation band distribution and fault

proximity

Fault-zone architecture is well documented both in
the field and in experimental studies (Antonellini
et al. 1994; Antonellini & Pollard 1995; Caine
et al. 1996; Faulkner et al. 2010). A typical fault
zone comprises of a fault core surrounded by a dam-
age zone (Faulkner et al. 2010; Schueller et al.
2013). The fault core is an area of localized strain
that accommodates the majority of displacement
(Faulkner et al. 2010; Schueller et al. 2013). Dam-
age zones in porous sandstones form by growth of
deformation bands prior to the initiation of a slip sur-
face (Schueller et al. 2013). Shear strain, state of
stress, rock type and microstructural deformation

mechanisms are key controls in fault-zone architec-
ture (Ngwenya et al. 2003). Hydraulic properties of
faults and intrinsic properties of host rocks evolve
spatially and temporarily, producing heterogeneous
permeability.

At both Telegraph Road and Thurstaston Com-
mon, deformation bands broadly increase in den-
sity with fault proximity (Figs 3 & 4), consistent
with 106 outcrop scanlines recording predominantly
cataclastic band density in porous sandstones sur-
rounding extensional faults documented by Sch-
ueller et al. (2013). Before the initiation of a slip
surface, it is evident that deformation band density
reaches a maximum of around 20–25 bands per
30 cm section independent of fault displacement,
analogous to critical microfracture density recorded
within low-porosity granodiorite by Mitchell &
Faulkner (2009). The trace of isolated deformation
bands in outcrops at Thurstaston Common tend to
be straight: however, zones of deformation have
an anastomising profile showing linkage structures
between neighbouring segments (Antonellini et al.
1994), similar to the duplex structure described
by Cruikshank et al. (1991a, b). The presence of
linkage structures suggests a sense of shear, as
they resemble miniature restraining bends (Davis
1999). Deformation band lozenges (defined as
the rock volumes between deformation bands) at

Fig. 7.
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Porosity calculations using ImageJ analysis software for both the deformation band core and host rock:
(a) coarse-grained quartzarenite; (b) fine-grained subarkosic sandstone.
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Thurstaston Common (Figs 2b & 4b) closely com-
pare to those documented within Goblin Valley,
Utah, USA (Awdal et al. 2014). Early studies
explained the development of closely spaced cata-
clastic bands (Aydin 1978; Aydin & Johnson 1978)
in proximity to low-displacement faults (,10 m
throw) by the strain-hardening model, showing an
increase in deformation band density with fault dis-
placement (Nicol et al. 2013). Cataclastic deforma-
tion bands have been suggested to strengthen during
formation, thus leading to subsequent band forma-
tion within relatively weaker wall rock, adjacent
to the earlier-formed bands (Nicol et al. 2013).
Density counts, the positive relief of deformation
bands, linkage structures and microstructural analy-
sis (porosity reduction, interlocking quartz frag-
ments, intense grain comminution increasing grain
angularity, shear compaction and preferential quartz
cementation) at Thurstaston all support a strain-
hardening model, resulting in an increase in defor-
mation band density with fault proximity (Nicol
et al. 2013). Anomalous results, such as the spike
in deformation band density within the mapping
zone at Thurstatson Common (Fig. 4e), may be
explained by an alteration in host-rock cohesion
by neighbouring slip surfaces. Deformation band
development explained by a geometric model (see
Nicol et al. 2013 and references therein) infers that
deformation bands are strain weakened and form
clusters at geometric complexities or irregularities
on faults. Further three-dimensional analysis of the
fault geometry and a better understanding of the rel-
ative timings of slip-surface formation would be
required to apply a geometric model at Thurstaston.

Distribution-localization of deformation bands

as a function of intrinsic host-rock properties

Mineralogy. The mineralogy of the host rock is
an important controlling factor, with different
minerals having varying chemical stability, shape,
strength and vulnerability to cleavage fractures
(Aydin et al. 2006). Mineralogically mature, coarse-
grained quartzarenite samples (Fig. 2) display highly
localized cataclasis within the deformation band
(Fig. 5), with little host-rock fracturing in compari-
son to the underlying subarkosic sandstone (Fig.
6). In addition to intense cataclasis within the defor-
mation band core, feldspathic subarkosic samples in
this study show a higher degree of grain fracturing
within the host rock (Fig. 6). Because feldspar frac-
tures at lower differential stress than quartz grains
(Rawling & Goodwin 2003), an increase in host-
rock deformation may be a result of a selective
grain-size reduction of weak grains (Fig. 6e). Prefer-
ential feldspar grain-size reduction has also been
documented within conjugate sets of deformation

bands within poorly consolidated arkosic sands of
the Vienna Basin, Austria, by Exner & Tschegg
(2012). Intense cataclasis creating angular grains
and broadening the grain-size distribution consider-
ably lowers porosity as a result of more efficient
grain packing (Main et al. 2001; Ogilvie & Glover
2001; Tueckmantel et al. 2012).

Porosity, grain size and sorting. Cataclastic defor-
mation bands are common in high-porosity (c.
10–35%) sands and sandstones deformed at low
confining pressures of ,40 MPa at shallow depths
of ,3 km (Nicol et al. 2013). Samples with high
porosity have lower rock strength than low-porosity
samples as pore spaces coalesce, thus increasing the
likelihood of pore collapse and so promoting vol-
umetric reduction deformation (Aydin et al. 2006).
The critical minimum porosity for deformation
band development and propagation is lowered by
the addition of shear to compaction (Fossen et al.
2011). In order to advance the understanding of fluid
migration into subsurface reservoirs, it is important
to note that the distribution of porosity (and per-
meability) in deformed high-porosity sandstones
can be markedly anisotropic (Farrell et al. 2014).
Whilst mapping of a thin section using image analy-
sis yields a more detailed microscale (mm-scale)
porosity profile, porosity values may also be depen-
dent upon the scale of the measurement and the
thin-section orientation with respect to the orienta-
tion of the pores (Ogilvie et al. 2001). As expected,
helium porosity values are slightly higher than
those calculated using image analysis as image anal-
ysis does not include microporosity. In addition to
mineralogy and porosity, factors such as grain size
(Zhang et al. 1990; Yin et al. 1993; Lothe et al.
2002) and sorting (Cheung et al. 2012) significantly
alter the probability of deformation band develop-
ment and propagation.

It is well documented that larger grain sizes
deform under lower effective stresses than finer-
grain material (Zhang et al. 1990; Yin et al. 1993;
Lothe et al. 2002; Schultz & Siddharthan 2005;
Schultz et al. 2010; Tueckmantel et al. 2012).
Since sandstones at Thurstaston have a similar
sorting and fall within the porosity range that allows
for deformation band development, it is assumed
that host-rock grain size is the principal control on
deformation band density. Coarser grains have few
contact points, which leads to a larger stress concen-
tration and promotes grain-size reduction (Zhang
et al. 1990; Yin et al. 1993; Lothe et al. 2002) in
the form of Hertzian grain–grain interaction
(Fig. 8a). Hertzian fractures are explained by a com-
plex stress field that is set up when a spherical
indenter is pressed onto the surface of an isotropic
material. The stresses under and around the indenter
contact are compressive; however, outside the
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contact circle, a radially directed tensile stress is cre-
ated (Frank & Lawn 1967; Master 2012). Results are
consistent with deformation band development
within Navajo Sandstone sequences with varying
grain size and porosity values at Buckskin Gulsch,
Utah, USA (Schultz et al. 2010). The corresponding
yield envelopes for layers within the Navajo Sand-
stone are documented to be largest for the fine-
grained, less porous sandstones, and smallest for
the largest values of porosity and average grain
sizes (Schultz et al. 2010). The fact that there is a
higher density of deformation bands within the
overlying coarse-grained sandstone compared to
the fine-grained sandstone suggests strain incompat-
ibility between the layers. However, although the
density of localized deformation may be different,
more strain may have been accommodated through
distributed deformation via porosity loss (without
fracture) in the finer-grain-sized unit.

In considering mineralogy and grain-size distri-
bution, it is possible to surmise that an increase in
K-feldspar content within sandstones will produce

a wider grain-size distribution, since K-feldspar has
been shown to fracture under lower differential stress
than quartz (Rawling & Goodwin 2003; Exner &
Tschegg 2012). Thus, a high K-feldspar content
may potentially inhibit the development of defor-
mation bands within more feldspathic sandstones,
as a non-uniform grain-size distribution allows
smaller grains to distribute the load over large parti-
cles, and so reduces stress concentrations between
grains (Sammis & Ben-Zion 2008; Cheung et al.
2012). Petrographical evidence (Fig. 8b) within
fine-grained sandstones support the ‘constrained
comminution’ model proposed by Sammis et al.
(1987), with a localized increase in grain-size distri-
bution within the deformation band core allowing
for survivor (or relict) grains.

Implication for sandstone reservoirs

During the appraisal and development of oil and
gas fields, analogue studies are helpful for predict-
ing the potential impact on subsurface fluid-flow

Fig. 8. (a) Hertzian grain-contact fracture, creating force chains of fractures propagating into neighbouring grains,
promoted by the coarser grain size. The schematic illustration is adapted from Soliva et al. (2013). (b) Localized
increase in grain-size distribution within the fine-grained sandstone, allowing smaller grains to distribute the load
over larger particles and so reducing the tensile stress.
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behaviour. Unfortunately, as the classification and
petrophysical measurements of cataclastic defor-
mation bands are not systematic in the literature, it
is very difficult to yield a meaningful comparison
of results from different study areas (Saillet & Wib-
berley 2013). However, by combining this study
with other analogue studies and experimental data-
sets, it is likely that reservoir quality predictions
will be greatly improved. Cataclastic deformation
bands in the literature commonly display lower per-
meability than the host rock, maximum reductions
being of the order of five–six magnitudes and aver-
age reductions being around two–three orders (Sail-
let & Wibberley 2013). Clusters of cataclastic bands
have been shown to be as efficient seals as fault
cores, withholding up to about a 1 m column of oil
and CO2 (Torabi 2014). The porosity reduction
documented in this study would (locally, at least)
greatly reduce the reservoir quality, acting as a baf-
fle to fluid flow. For deformation bands to affect well
performance, bands must extend over typical well
drainage areas: 0.5–1 km2 for onshore and shallow
offshore wells; and 5 km2 in deep-water wells
(Brandenburg et al. 2012). Although deformation
bands are commonly confined within the damage
zones of faults, examples of deformation bands
extending over such a large scale have been docu-
mented: for example, deformation bands extend
approximately 7.5 km2 at the Valley of Fire,
Nevada, USA (Brandenburg et al. 2012). In addition
to vertical and horizontal continuity and intrinsic
host-rock properties, the reservoir-scale impact
will also depend on their permeability, orientation,
connectivity and abundance (Sternlof et al. 2004;
Brandenburg et al. 2012). The addition of quartz
cement, lowering the porosity within the defor-
mation band core, further increases the likelihood
of reservoir compartmentalization. Unless accom-
panied by quartz cement, deformation bands in
North Sea reservoirs have not proved to be problem-
atic to oil and gas production (Solum et al. 2012).
Figure 9 provides a schematic synthesis of the likely
distribution of deformation bands and resulting

porosity loss associated with conjugate sets of
deformation bands within two sandstones with vary-
ing intrinsic host-rock properties. If encountered
within core, reservoir geologists may use a combi-
nation of analogue studies in order to predict the
extent of subseismic deformation bands, and the
impact on petrophysical properties and reservoir
performance. From another point of view, subseis-
mic fault-development mechanisms may be under-
stood by the intrinsic geometry of damage zones
connected to the processes of fault growth (Schuel-
ler et al. 2013).

Specific importance to the East Irish Sea Basin

The Wilmslow Sandstone Formation, part of the
Sherwood Sandstone Group, continues north and
west into the East Irish Sea Basin, where it is locally
known as the St Bees Sandstone Formation (Mea-
dows 2006). The Sherwood Sandstone Group is

Fig. 9. Schematic synthesis illustration. Deformation bands broadly increase with proximity to faulting.
Deformation bands are predominantly restricted to the coarse-grained sandstone. Deformation bands in this study
would lower the reservoir quality and potentially compartmentalize the sandstone reservoir.

Fig. 10. Schematic illustration of the burial history of
the Sherwood Sandstone Group and the timing of
deformation band development at Thurstaston. ‘A’
is the Permo-Triassic rifting forming north–south-
trending faults and both the Cheshire and East Irish
Sea basins. Development of WNW-trending transfer
faults and deformation bands within the Cheshire Basin
and, possibly, the East Irish Sea Basin. ‘B’ is the
timing of the underlying Carboniferous source-rock
maturation and migration of hydrocarbons into the
neighbouring East Irish Sea Basin.
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a significant petroleum reservoir within the East
Irish Sea Petroleum Province (Duncan et al. 1998).
A schematic burial history of the outcrop at Thur-
staston, including the possible timing of defor-
mation band development (Fig. 10), has been
developed based on burial curves constructed by
Rowley & White (1998) and the timing of WNW-
trending faults suggested by Chadwick (1997). Apa-
tite fission-track analysis from an outcrop 5 km
NW of Thurstaston Common seemed to suggest a
maximum palaeo-temperature, prior to early Ter-
tiary uplift and cooling, of 90–1008C (Green et al.
1997). However, in the undeformed matrix, the
high intergranular volume implies limited burial
and compaction, and negligible quartz cement
(Fig. 6b) implies a maximum temperature much
less than 808C based on depth v. host-rock quartz
cement relationships (Worden et al. 2000).

Carboniferous source rocks matured during the
Late Cretaceous–Early Tertiary, and then oil and
gas migrated into the Lower Triassic Sherwood
Sandstone (Duncan et al. 1998). The timing of the
development of WNW-trending faults within both
the Cheshire and East Irish Sea basins is poorly
constrained. Knott (1994) suggested that WNW-
trending faults within the Cheshire Basin formed
under a NW–SE-trending maximum horizontal
compressive stress regime, present since the Paleo-
cene. It is unlikely that the WNW-trending faults
at Thurstaston have formed under a compressive
regime, since faults clearly display extensional off-
sets. Instead, it is possible that these faults, which
have formed subperpendicular to, and cross-cut,
the main north–south-trending faults are transfer
fault (Chadwick 1997). Adding to the complexity,
the extensional direction may not have remained
constant throughout the evolution of the Cheshire
Basin (Chadwick 1997). Despite some uncertainty
on the timing of deformation band development
within the damage zones of the WNW-trending
faults, faulting occurred prior to Tertiary uplift,
source-rock maturation and hydrocarbon migration
(Fig. 10). Oil and gas migration may have, therefore,
been affected by deformation bands in the oil- and
gas-bearing offshore equivalent outcrop. As the
deformationbandsarelocallyquartz-cemented(thus,
further reducing porosity and permeability lower
than achieved by simple comminution), careful
analysis of cores and borehole image logs for defor-
mation band occurrence and their stratigraphic con-
straints should be undertaken during field appraisal
and the development of oil- and gas-bearing struc-
tures in the basin centres.

Conclusions

† Deformation bands in the Triassic sandstone
exposed at Thurstaston are cataclastic with

a strong component of shear and porosity
reduction.

† Deformation bands at Thurstaston broadly
increase in density (number/m2) with proximity
to faulting over a scale of several metres.

† Deformation band distribution at Thurstaston is
predominantly controlled by grain size. Defor-
mation bands are more abundant within the over-
lying coarse-grained quartzarenite, and sporadic
within the underlying fine-grained subarkose.
K-feldspar is preferentially fractured in compar-
ison to quartz grains.

† Deformation bands in Triassic sandstones from
Thurstaston have significantly altered the petro-
physical properties of the intact rock. Porosity
is substantially reduced relative to the matrix
due to intense cataclasis and localized quartz
cementation. The potential impact of deforma-
tion bands in nearby reservoirs in the same lithol-
ogy could have a detrimental effect on reservoir
quality and well performance.

We would like to acknowledge Oliver Hinds for his guid-
ance on statistical grain-size analysis. We are also grateful
to John Bedford for assistance during the operation of the
helium porosimeter and James Utley for XRD analysis.
This manuscript has benefited considerably from the com-
ments of Dr D. Healey and an anonymous reviewer.
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