1,497 research outputs found

    On the Progenitors of Collapsars

    Full text link
    We study the evolution of stars that may be the progenitors of common (long-soft) GRBs. Bare rotating helium stars, presumed to have lost their envelopes due to winds or companions, are followed from central helium ignition to iron core collapse. Including realistic estimates of angular momentum transport (Heger, Langer, & Woosley 2000) by non-magnetic processes and mass loss, one is still able to create a collapsed object at the end with sufficient angular momentum to form a centrifugally supported disk, i.e., to drive a collapsar engine. However, inclusion of current estimates of magnetic torques (Spruit 2002) results in too little angular momentum for collapsars.Comment: 3 pages, 5 figures, in Proc. Woods Hole GRB meeting, ed. Roland Vanderspe

    The Central Engines of Gamma-Ray Bursts

    Full text link
    Leading models for the "central engine" of long, soft gamma-ray bursts (GRBs) are briefly reviewed with emphasis on the collapsar model. Growing evidence supports the hypothesis that GRBs are a supernova-like phenomenon occurring in star forming regions, differing from ordinary supernovae in that a large fraction of their energy is concentrated in highly relativistic jets. The possible progenitors and physics of such explosions are discussed and the important role of the interaction of the emerging relativistic jet with the collapsing star is emphasized. This interaction may be responsible for most of the time structure seen in long, soft GRBs. What we have called "GRBs" may actually be a diverse set of phenomena with a key parameter being the angle at which the burst is observed. GRB 980425/SN 1988bw and the recently discovered hard x-ray flashes may be examples of this diversity.Comment: 8 pages, Proc. Woods Hole GRB meeting, Nov 5 - 9 WoodsHole Massachusetts, Ed. Roland Vanderspe

    Fallback and Black Hole Production in Massive Stars

    Get PDF
    The compact remnants of core collapse supernovae - neutron stars and black holes - have properties that reflect both the structure of their stellar progenitors and the physics of the explosion. In particular, the masses of these remnants are sensitive to the density structure of the presupernova star and to the explosion energy. To a considerable extent, the final mass is determined by the ``fallback'', during the explosion, of matter that initially moves outwards, yet ultimately fails to escape. We consider here the simulated explosion of a large number of massive stars (10 to 100 \Msun) of Population I (solar metallicity) and III (zero metallicity), and find systematic differences in the remnant mass distributions. As pointed out by Chevalier(1989), supernovae in more compact progenitor stars have stronger reverse shocks and experience more fallback. For Population III stars above about 25 \Msun and explosion energies less than 1.5Ă—10511.5 \times 10^{51} erg, black holes are a common outcome, with masses that increase monotonically with increasing main sequence mass up to a maximum hole mass of about 35 \Msun. If such stars produce primary nitrogen, however, their black holes are systematically smaller. For modern supernovae with nearly solar metallicity, black hole production is much less frequent and the typical masses, which depend sensitively on explosion energy, are smaller. We explore the neutron star initial mass function for both populations and, for reasonable assumptions about the initial mass cut of the explosion, find good agreement with the average of observed masses of neutron stars in binaries. We also find evidence for a bimodal distribution of neutron star masses with a spike around 1.2 \Msun (gravitational mass) and a broader distribution peaked around 1.4 \Msun.Comment: Accepted for publication in Ap

    Carbon Ignition in Type Ia Supernovae: II. A Three-Dimensional Numerical Model

    Full text link
    The thermonuclear runaway that culminates in the explosion of a Chandrasekhar mass white dwarf as a Type Ia supernova begins centuries before the star actually explodes. Here, using a 3D anelastic code, we examine numerically the convective flow during the last minute of that runaway, a time that is crucial in determining just where and how often the supernova ignites. We find that the overall convective flow is dipolar, with the higher temperature fluctuations in an outbound flow preferentially on one side of the star. Taken at face value, this suggests an asymmetric ignition that may well persist in the geometry of the final explosion. However, we also find that even a moderate amount of rotation tends to fracture this dipole flow, making ignition over a broader region more likely. Though our calculations lack the resolution to study the flow at astrophysically relevant Rayleigh numbers, we also speculate that the observed dipolar flow will become less organized as the viscosity becomes very small. Motion within the dipole flow shows evidence of turbulence, suggesting that only geometrically large fluctuations (~1 km) will persist to ignite the runaway. We also examine the probability density function for the temperature fluctuations, finding evidence for a Gaussian, rather than exponential distribution, which suggests that ignition sparks may be strongly spatially clustered.Comment: 16 pages, 9 figures, submitted to ApJ. A high resolution version of this paper, as well as movies, can be found at http://www.ucolick.org/~mqk/Carbo

    Low Mach Number Modeling of Type Ia Supernovae. IV. White Dwarf Convection

    Full text link
    We present the first three-dimensional, full-star simulations of convection in a white dwarf preceding a Type Ia supernova, specifically the last few hours before ignition. For these long-time calculations we use our low Mach number hydrodynamics code, MAESTRO, which we have further developed to treat spherical stars centered in a three-dimensional Cartesian geometry. The main change required is a procedure to map the one-dimensional radial base state to and from the Cartesian grid. Our models recover the dipole structure of the flow seen in previous calculations, but our long-time integration shows that the orientation of the dipole changes with time. Furthermore, we show the development of gravity waves in the outer, stable portion of the star. Finally, we evolve several calculations to the point of ignition and discuss the range of ignition radii.Comment: 42 pages, some figures degraded to conserve space. Accepted to The Astrophysical Journal (http://journals.iop.org/

    On the Origin of the Type Ia Supernova Width-Luminosity Relation

    Get PDF
    Brighter Type Ia supernovae (SNe Ia) have broader, more slowly declining B-band light curves than dimmer SNe Ia. We study the physical origin of this width-luminosity relation (WLR) using detailed radiative transfer calculations of Chandrasekhar mass SN Ia models. We find that the luminosity dependence of the diffusion time (emphasized in previous studies) is in fact of secondary relevance in understanding the model WLR. Instead, the essential physics involves the luminosity dependence of the spectroscopic/color evolution of SNe Ia. Following maximum-light, the SN colors are increasingly affected by the development of numerous Fe II/Co II lines which blanket the B-band and, at the same time, increase the emissivity at longer wavelengths. Because dimmer SNe Ia are generally cooler, they experience an earlier onset of Fe III to Fe II recombination in the iron-group rich layers of ejecta, resulting in a more rapid evolution of the SN colors to the red. The faster B-band decline rate of dimmer SNe Ia thus reflects their faster ionization evolution.Comment: 6 pages, submitted to Ap

    Evolution and Explosion of Very Massive Primordial Stars

    Full text link
    While the modern stellar IMF shows a rapid decline with increasing mass, theoretical investigations suggest that very massive stars (>100 solar masses) may have been abundant in the early universe. Other calculations also indicate that, lacking metals, these same stars reach their late evolutionary stages without appreciable mass loss. After central helium burning, they encounter the electron-positron pair instability, collapse, and burn oxygen and silicon explosively. If sufficient energy is released by the burning, these stars explode as brilliant supernovae with energies up to 100 times that of an ordinary core collapse supernova. They also eject up to 50 solar masses of radioactive Ni56. Stars less massive than 140 solar masses or more massive than 260 solar masses should collapse into black holes instead of exploding, thus bounding the pair-creation supernovae with regions of stellar mass that are nucleosynthetically sterile. Pair-instability supernovae might be detectable in the near infrared out to redshifts of 20 or more and their ashes should leave a distinctive nucleosynthetic pattern.Comment: 7 pages, including 4 figures; in. proc. MPA/ESO/MPE/USM Joint Astronomy Conference "Lighthouses of the Universe: The Most Luminous Celestial Objects and their use for Cosmology
    • …
    corecore