We present the first three-dimensional, full-star simulations of convection
in a white dwarf preceding a Type Ia supernova, specifically the last few hours
before ignition. For these long-time calculations we use our low Mach number
hydrodynamics code, MAESTRO, which we have further developed to treat spherical
stars centered in a three-dimensional Cartesian geometry. The main change
required is a procedure to map the one-dimensional radial base state to and
from the Cartesian grid. Our models recover the dipole structure of the flow
seen in previous calculations, but our long-time integration shows that the
orientation of the dipole changes with time. Furthermore, we show the
development of gravity waves in the outer, stable portion of the star. Finally,
we evolve several calculations to the point of ignition and discuss the range
of ignition radii.Comment: 42 pages, some figures degraded to conserve space. Accepted to The
Astrophysical Journal (http://journals.iop.org/