160 research outputs found

    Optimizing mating schemes in fish breeding

    Get PDF
    The optimal contribution selection method and the simulated annealing algorithm were used to maximize the genetic gain and reduce inbreeding in fish breeding populations. This study considered the following mating designs: full factorial (3 x 3); full factorial (6 x 6) and nested (6 males x 18 females). A quantitative trait based on a strictly additive and polygenic model was simulated. Two levels for the number of genotyped offspring (360 or 720) and three levels of heritability (0.1; 0.3; 0.5) were assumed. The best results in terms of DF and DG were obtained with the full factorial design (6 x 6) and considering a trait with a high heritability. The optimal family size was found at 20 fish per mating

    Calculation of multiple-trait sire reliability for traits included in a dairy cattle fertility index

    Get PDF
    The advent of genetic evaluations for fertility traits in the UK offers valuable information to farmers that can be used to control fertility problems and safeguard against involuntary culling. In addition to estimated genetic merit, proof reliabilities are required to make correct use of this genetic information. Exact reliabilities, based on the inverse of the coefficient matrix, cannot be estimated for large data sets because of computational restrictions. A method to calculate approximate reliabilities was implemented based on a six-trait sire model. Traits considered were interval between first and second calving, interval between first calving and first service, non-return rate 56 days post first service, number of inseminations per conception, daily milk yield at test nearest day 110 and body condition score. Sire reliabilities were calculated in four steps. Firstly, the number of effective daughters was calculated for each bull, separately for each trait, based on total number of daughters and daughter distribution across herd-year-seasons. Secondly, multiple-trait reliabilities were calculated, based on bull daughter contribution, applying selection index theory on independent daughter groups. Thirdly, (great-) grand-daughter contribution was added to the reliability of each bull, using daughter-based reliability of sons and maternal grandsons. An adjustment was made to account for the probability of bull and son or grandson having daughters in the same herd-year-season. Without the adjustment, reliabilities were inflated by proportionately 0·15 to 0·25. Finally, parent (sire and maternal grandsire) contribution was added to the reliability of each bull. The procedure was first tested on a data subset of 28 061 cow records from 285 bulls. Approximate reliabilities were compared with exact estimates based on the inverse of the coefficient matrix. Mean absolute differences ranged from 0·014 to 0·020 for the six traits and correlation between exact and approximate estimates neared unity. In a full-scale application, sire reliability for the fertility traits increased by proportionately 0·47 to 0·79 over single-trait estimates and the number of bulls with a reliability of 0·60 or more increased by 42 to 115%

    Summary of achievements of the European Metrology Research Programme Project ‘‘Implementing the new Kelvin” (InK 1)

    Get PDF
    partially_open5sìWe report a summary of the technical achievements of the European Metrology Research Programme Project (EMRP) ‘‘Implementing the new Kelvin” (InK 1). In short these are: The first determination of definitive thermodynamic temperatures for the point of inflection of the high temperature fixed points of Re-C, Pt-C and Co-C as well as a new evaluation of the Cu freezing point. The first trial of the new dissemination mechanisms for thermodynamic temperature at high temperatures, as described in the mise en pratique for the definition of the kelvin (MeP-K). A new ultra-low uncertainty thermodynamic evaluation of T T90 from about 30 K to 303 K, with particular emphasis on temperatures around the water triple point (273.16 K). The first re-evaluation of T T2000 from 0.02 K to about 1 K with an uncertainty of <1%. Taken together these results represent a significant advance in primary thermometry. We also give a brief introduction to the successor project (InK 2) and discuss the impact of this work on the kelvin redefinition and next version of the MeP-K (i.e. the MeP-K-19)openMachin, G.; Engert, J.; Gavioso, R.; Sadli, M.; Woolliams, E.Machin, G.; Engert, J.; Gavioso, ROBERTO MARIA; Sadli, M.; Woolliams, E

    Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile tilapia

    Get PDF
    International audienceAbstractBackgroundThe availability of both pedigree and genomic sources of information for animal breeding and genetics has created new challenges in understanding how they can be best used and interpreted. This study estimated genetic variance components based on genomic information and compared these to the variance components estimated from pedigree alone in a population generated to estimate non-additive genetic variance. Furthermore, the study examined the impact of the assumptions of Hardy–Weinberg equilibrium (HWE) on estimates of genetic variance components. For the first time, the magnitude of inbreeding depression for important commercial traits in Nile tilapia was estimated by using genomic data.ResultsThe study estimated the non-additive genetic variance in a Nile tilapia population of full-sib families and, when present, it was almost entirely represented by additive-by-additive epistatic variance, although in pedigree studies this non-additive variance is commonly assumed to arise from dominance. For body depth (BD) and body weight at harvest (BWH), the proportion of additive-by-additive epistatic to phenotypic variance was estimated to be 0.15 and 0.17 using genomic data (P < 0.05). In addition, with genomic data, the maternal variance (P < 0.05) for BD, BWH, body length (BL) and fillet weight (FW) explained approximately 10% of the phenotypic variances, which was comparable to pedigree-based estimates. The study also showed the detrimental effects of inbreeding on commercial traits of tilapia, which was estimated to reduce trait values by 1.1, 0.9, 0.4 and 0.3% per 1% increase in the individual homozygosity for FW, BWH, BD and BL, respectively. The presence of inbreeding depression but lack of dominance variance was consistent with an infinitesimal dominance model for the traits.ConclusionsThe benefit of including non-additive genetic effects for genetic evaluations in tilapia breeding schemes is not evident from these findings, but the observed inbreeding depression points to a role for reciprocal recurrent selection. Commercially, this conclusion will depend on the scheme’s operational costs and resources. The creation of maternal lines in Tilapia breeding schemes may be a possibility if the variation associated with maternal effects is heritable

    Effect of non-random mating on genomic and BLUP selection schemes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk of long-term unequal contribution of mating pairs to the gene pool is that deleterious recessive genes can be expressed. Such consequences could be alleviated by appropriately designing and optimizing breeding schemes i.e. by improving selection and mating procedures.</p> <p>Methods</p> <p>We studied the effect of mating designs, random, minimum coancestry and minimum covariance of ancestral contributions on rate of inbreeding and genetic gain for schemes with different information sources, i.e. sib test or own performance records, different genetic evaluation methods, i.e. BLUP or genomic selection, and different family structures, i.e. factorial or pair-wise.</p> <p>Results</p> <p>Results showed that substantial differences in rates of inbreeding due to mating design were present under schemes with a pair-wise family structure, for which minimum coancestry turned out to be more effective to generate lower rates of inbreeding. Specifically, substantial reductions in rates of inbreeding were observed in schemes using sib test records and BLUP evaluation. However, with a factorial family structure, differences in rates of inbreeding due mating designs were minor. Moreover, non-random mating had only a small effect in breeding schemes that used genomic evaluation, regardless of the information source.</p> <p>Conclusions</p> <p>It was concluded that minimum coancestry remains an efficient mating design when BLUP is used for genetic evaluation or when the size of the population is small, whereas the effect of non-random mating is smaller in schemes using genomic evaluation.</p
    corecore