1,250 research outputs found
Automated analysis of weighted voting games
Weighted voting games (WVGs) are an important mechanism for modeling scenarios where a group of agents must reach agreement on some issue over which they have different preferences. However, for such games to be effective, they must be well designed. Thus, a key concern for a mechanism designer is to structure games so that they have certain desirable properties. In this context, two such properties are PROPER and STRONG. A game is PROPER if for every coalition that is winning, its complement is not. A game is STRONG if for every coalition that is losing, its complement is not. In most cases, a mechanism designer wants games that are both PROPER and STRONG. To this end, we first show that the problem of determining whether a game is PROPER or STRONG is, in general, NP-hard. Then we determine those conditions (that can be evaluated in polynomial time) under which a given WVG is PROPER and those under which it is STRONG. Finally, for the general NP-hard case, we discuss two different approaches for overcoming the complexity: a deterministic approximation scheme and a randomized approximation method
The Computational Difficulty of Bribery in Qualitative Coalitional Games
Qualitative coalitional games (QCG) are representations of coalitional games in which self interested agents, each with their own individual goals, group together in order to achieve a set of goals which satisfy all the agents within that group. In such a representation, it is the strategy of the agents to find the best coalition to join. Previous work into QCGs has investigated the computational complexity of determining which is the best coalition to join. We plan to expand on this work by investigating the computational complexity of computing agent power in QCGs as well as by showing that insincere strategies, particularly bribery, are possible when the envy-freeness assumption is removed but that it is computationally difficult to identify the best agents to bribe.Bribery, Coalition Formation, Computational Complexity
Boolean Hedonic Games
We study hedonic games with dichotomous preferences. Hedonic games are
cooperative games in which players desire to form coalitions, but only care
about the makeup of the coalitions of which they are members; they are
indifferent about the makeup of other coalitions. The assumption of dichotomous
preferences means that, additionally, each player's preference relation
partitions the set of coalitions of which that player is a member into just two
equivalence classes: satisfactory and unsatisfactory. A player is indifferent
between satisfactory coalitions, and is indifferent between unsatisfactory
coalitions, but strictly prefers any satisfactory coalition over any
unsatisfactory coalition. We develop a succinct representation for such games,
in which each player's preference relation is represented by a propositional
formula. We show how solution concepts for hedonic games with dichotomous
preferences are characterised by propositional formulas.Comment: This paper was orally presented at the Eleventh Conference on Logic
and the Foundations of Game and Decision Theory (LOFT 2014) in Bergen,
Norway, July 27-30, 201
Exogenous coalition formation in the e-marketplace based on geographical proximity
This paper considers a model for exogenous coalition formation in e-marketplaces. Using the informational advantage e-retailer creates coalitions of customers based on geographical proximity. Most of the literature regards this process as endogenous: a coalition leader bundles eventual purchases together in order to obtain a better bargaining position. In contrast - and in response to what is being observed in business practice - we analyse a situation in which an existing e-retailer exogenously forms customers' coalitions. Results of this study are highly encouraging. Namely, we demonstrate that even under highly imperfect warehouse management schemes leading to contagion eects, suggested combined delivery service may oer signifficant efficiency gains as well as opportunities for Pareto-improvement.Coalition formation, e-commerce, multi-agent systems, consumer satisfaction, demand planning, warehouse management.
Automating decision making to help establish norm-based regulations
Norms have been extensively proposed as coordination mechanisms for both
agent and human societies. Nevertheless, choosing the norms to regulate a
society is by no means straightforward. The reasons are twofold. First, the
norms to choose from may not be independent (i.e, they can be related to each
other). Second, different preference criteria may be applied when choosing the
norms to enact. This paper advances the state of the art by modeling a series
of decision-making problems that regulation authorities confront when choosing
the policies to establish. In order to do so, we first identify three different
norm relationships -namely, generalisation, exclusivity, and substitutability-
and we then consider norm representation power, cost, and associated moral
values as alternative preference criteria. Thereafter, we show that the
decision-making problems faced by policy makers can be encoded as linear
programs, and hence solved with the aid of state-of-the-art solvers
Online Automated Synthesis of Compact Normative Systems
Peer reviewedPostprin
- …