31 research outputs found

    Lipin-1 contributes to IL-4 mediated macrophage polarization

    Get PDF
    Macrophage responses contribute to a diverse array of pathologies ranging from infectious disease to sterile inflammation. Polarization of macrophages determines their cellular function within biological processes. Lipin-1 is a phosphatidic acid phosphatase in which its enzymatic activity contributes to macrophage pro-inflammatory responses. Lipin-1 also possesses transcriptional co-regulator activity and whether this activity is required for macrophage polarization is unknown. Using mice that lack only lipin-1 enzymatic activity or both enzymatic and transcriptional coregulator activities from myeloid cells, we investigated the contribution of lipin-1 transcriptional co-regulator function toward macrophage wound healing polarization. Macrophages lacking both lipin-1 activities did not elicit IL-4 mediated gene expression to levels seen in either wild-type or lipin-1 enzymatically deficient macrophages. Furthermore, mice lacking myeloid-associated lipin-1 have impaired full thickness excisional wound healing compared to wild-type mice or mice only lacking lipin-1 enzymatic activity from myeloid cell. Our study provides evidence that lipin-1 transcriptional co-regulatory activity contributes to macrophage polarization and influences wound healin

    Identification of a dominant CD4 T cell epitope in the membrane lipoprotein Tul4 from Francisella tularensis LVS

    Get PDF
    Francisella tularensis is a Gram-negative intracellular bacterium that is the causative agent of tularemia. Small mammals such as rodents and rabbits, as well as some biting arthropods, serve as the main vectors for environmental reservoirs of F. tularensis. The low infectious dose, ability to aerosolize the organism, and the possibility of generating antibiotic resistant strains make F. tularensis a prime organism for use in bioterrorism. As a result, some strains of F. tularensis have been placed on the CDC category A select agent list. T cell immune responses are thought to be a critical component in protective immunity to this organism. However, investigation into the immune responses to F. tularensis has been hampered by the lack of molecularly defined epitopes. Here we report the identification of a major CD4+ T cell epitope in C57Bl/6 (B6) mice. The murine model of F. tularensis infection is relevant as mice are a natural host for F. tularensis LVS and exhibit many of the same features of tularemia seen in humans. Using T cell hybridomas derived from B6 mice that had either been inoculated with F. tularensis and allowed to clear the infection or which had been immunized by conventional means using purified recombinant protein in adjuvant, we have identified amino acids 86–99 of the lipoprotein Tul4 (RLQWQAPEGSKCHD) as an immunodominant CD4 T cell epitope in B6 mice. This epitope is a major component of both the acute and memory responses to F. tularensis infection and can constitute as much as 20% of the responding CD4 T cells in an acute infection. Reactive T cells can also effectively enter the long-term memory T cell pool. The identification of this epitope will greatly aid in monitoring the course of F. tularensis infection and will also aid in the development of effective vaccine strategies for F. tularensis

    Infection with Francisella tularensis LVS clpB Leads to an Altered yet Protective Immune Response

    Get PDF
    ABSTRACT Bacterial attenuation is typically thought of as reduced bacterial growth in the presence of constant immune pressure. Infection with Francisella tularensis elicits innate and adaptive immune responses. Several in vivo screens have identified F. tularensis genes necessary for virulence. Many of these mutations render F. tularensis defective for intracellular growth. However, some mutations have no impact on intracellular growth, leading us to hypothesize that these F. tularensis mutants are attenuated because they induce an altered host immune response. We were particularly interested in the F. tularensis LVS (live vaccine strain) clpB (FTL_0094) mutant because this strain was attenuated in pneumonic tularemia yet induced a protective immune response. The attenuation of LVS clpB was not due to an intracellular growth defect, as LVS clpB grew similarly to LVS in primary bone marrow-derived macrophages and a variety of cell lines. We therefore determined whether LVS clpB induced an altered immune response compared to that induced by LVS in vivo . We found that LVS clpB induced proinflammatory cytokine production in the lung early after infection, a process not observed during LVS infection. LVS clpB provoked a robust adaptive immune response similar in magnitude to that provoked by LVS but with increased gamma interferon (IFN-γ) and interleukin-17A (IL-17A) production, as measured by mean fluorescence intensity. Altogether, our results indicate that LVS clpB is attenuated due to altered host immunity and not an intrinsic growth defect. These results also indicate that disruption of a nonessential gene(s) that is involved in bacterial immune evasion, like F. tularensis clpB , can serve as a model for the rational design of attenuated vaccines

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for CrossCohort Comparisons of COVID-19 Sera

    Get PDF
    The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glyco-protein (VSVDG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n . 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week. IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We there-fore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.Fil: Oguntuyo, Kasopefoluwa. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Stevens, Christian S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hung, Chuan Tien. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ikegame, Satoshi. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Acklin, Joshua A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kowdle, Shreyas S.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Carmichael, Jillian C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Chiu, Hsin Ping. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Azarm, Kristopher D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Haas, Griffin D.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Amanat, Fatima. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Klingler, Jéromine. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Baine, Ian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Arinsburg, Suzanne. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Bandres, Juan C.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Siddiquey, Mohammed N. A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Schilke, Robert M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Woolard, Matthew D.. State University of Louisiana; Estados UnidosFil: Zhang, Hongbo. State University of Louisiana; Estados UnidosFil: Duty, Andrew J.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Kraus, Thomas A.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Moran, Thomas M.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Tortorella, Domenico. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lim, Jean K.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Gamarnik, Andrea Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Hioe, Catarina E.. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Zolla Pazner, Susan. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ivanov, Stanimir S.. State University of Louisiana; Estados UnidosFil: Kamil, Jeremy. State University of Louisiana; Estados UnidosFil: Krammer, Florian. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Lee, Benhur. Icahn School of Medicine at Mount Sinai; Estados UnidosFil: Ojeda, Diego Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas en Retrovirus y Sida. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas en Retrovirus y Sida; ArgentinaFil: González López Ledesma, María Mora. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Costa Navarro, Guadalupe Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Pallarés, H. M.. No especifíca;Fil: Sanchez, Lautaro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Perez, P.. No especifíca;Fil: Ostrowsk, M.. No especifíca;Fil: Villordo, S. M.. No especifíca;Fil: Alvarez, D. E.. No especifíca;Fil: Caramelo, J. J.. No especifíca;Fil: Carradori, J.. No especifíca;Fil: Yanovsky, M. J.. No especifíca

    NK Cells in Gamma-Interferon-Deficient Mice Suppress Lung Innate Immunity against Mycoplasma spp.

    No full text
    The purpose of this study was to examine the 100-fold difference in mycoplasma levels in lungs of gamma interferon knockout (IFN-γ(−/−)) mice compared to those seen with wild-type BALB/c mice at 3 days postinfection. NK cells secreted IFN-γ; however, their cytotoxic granule extracts failed to kill mycoplasma. We found a conundrum: the clearance of organisms was as effective in NK-depleted IFN-γ(−/−) animals as in wild-type mice (with both IFN-γ and NK cells). NK(+) IFN-γ(−/−) animals had high mycoplasma burdens, but, after NK-like cell depletion, mycoplasma numbers were controlled. Essentially, IFN-γ was important in animals with NK-like cells and unimportant in animals without NK cells, suggesting that IFN-γ counters deleterious effects of NK-like cells. Impairment of innate immunity in IFN-γ(−/−) mice was not due to NK-like cell killing of macrophages. The increased levels of inflammatory cytokines and neutrophils in lung fluids of NK(+) IFN-γ(−/−) mice were reduced after NK cell depletion. In summary, in the murine model that resembles chronic human disease, innate immunity to mycoplasma requires IFN-γ when there are NK-like cells and the positive effects of IFN-γ counteract negative effects of NK-like cells. When imbalanced, NK-like cells promote disease. Thus, it was not the lack of IFN-γ but the presence of a previously unrecognized NK-like cell-suppressive activity that contributed to the higher mycoplasma numbers. It appears that pulmonary NK cells may contribute to the immunosuppressive environment of the lung, but when needed, these dampening effects can be counterbalanced by IFN-γ. Furthermore, there may be instances where perturbation of this regulatory balance contributes to the susceptibility to and severity of disease

    Depletion of CD8 +

    No full text

    Selective deletion of antigen-specific CD8(+) T cells by MHC class I tetramers coupled to the type I ribosome-inactivating protein saporin

    No full text
    CD8(+) cytotoxic T lymphocytes (CTLs) are important effector cells responsible for tissue destruction in several autoimmune and allograft-related diseases. To discover if pathogenic T cells could be selectively deleted, we investigated the ability of a toxin coupled to major histocompatibility complex (MHC) class I tetramers to kill antigen-specific CD8(+) T cells. H2-D(b) tetramers were assembled using streptavidin conjugated to the ribosome-inactivating protein (RIP) saporin (SAP). These tetramers inhibited ribosome activity in vitro, retained the T-cell receptor (TCR)–binding specificity of their nontoxic counterparts, and were internalized by 100% of target cells, leading to cell death in 72 hours. Cytotoxicity was dependent on the tetramer dose and avidity for the T cell. A single injection of the SAP-coupled tetramer eliminated more than 75% of cognate, but not control, T cells. This work demonstrates the therapeutic potential of cytotoxic tetramers to selectively eradicate pathogenic clonotypes while leaving overall T-cell immunity intact
    corecore