655 research outputs found

    The primary structure of rat ribosomal protein L18a

    Get PDF
    AbstractThe amino acid sequence of rat ribosomal protein L18a was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L18a contains 175 amino acids and has a molecular mass of 20 047 Da. Hybridization of the cDNA to digests of rat nuclear DNA and to a preparation of poly (A)+ mRNA suggests that there are 8–11 copies of the L18a gene and that the mRNA for the protein is about 700 nucleotides in length. Rat L18a is related to Schizosaccharomyces pombe L17 and perhaps to Halobacterium marismortui L19

    Predicting worsted spinning performance with an artificial neural network model

    Full text link
    For a given fiber spun to pre-determined yarn specifications, the spinning performance of the yarn usually varies from mill to mill. For this reason, it is necessary to develop an empirical model that can encompass all known processing variables that exist in different spinning mills, and then generalize this information and be able to accurately predict yarn quality for an individual mill. This paper reports a method for predicting worsted spinning performance with an artificial neural network (ANN) trained with backpropagation. The applicability of artificial neural networks for predicting spinning performance is first evaluated against a well established prediction and benchmarking tool (Sirolan YarnspecTM). The ANN is then subsequently trained with commercial mill data to assess the feasibility of the method as a mill-specific performance prediction tool. Incorporating mill-specific data results in an improved fit to the commercial mill data set, suggesting that the proposed method has the ability to predict the spinning performance of a specific mill accurately. <br /

    Has the phasing out of stavudine in accordance with changes in WHO guidelines led to a decrease in single-drug substitutions in first-line antiretroviral therapy for HIV in sub-Saharan Africa?

    Get PDF
    This version is the Accepted Manuscript and is published in final edited form as: AIDS. 2017 January 02; 31(1): 147–157. doi:10.1097/QAD.0000000000001307OBJECTIVE: We assessed the relationship between phasing out stavudine in first-line antiretroviral therapy (ART) in accordance with WHO 2010 policy and single-drug substitutions (SDS) (substituting the nucleoside reverse transcriptase inhibitor in first-line ART) in sub-Saharan Africa. DESIGN: Prospective cohort analysis (International epidemiological Databases to Evaluate AIDS-Multiregional) including ART-naive, HIV-infected patients aged at least 16 years, initiating ART between January 2005 and December 2012. Before April 2010 (July 2007 in Zambia) national guidelines called for patients to initiate stavudine-based or zidovudine-based regimen, whereas thereafter tenofovir or zidovudine replaced stavudine in first-line ART. METHODS: We evaluated the frequency of stavudine use and SDS by calendar year 2004-2014. Competing risk regression was used to assess the association between nucleoside reverse transcriptase inhibitor use and SDS in the first 24 months on ART. RESULTS: In all, 33 441 (8.9%; 95% confience interval 8.7-8.9%) SDS occurred among 377 656 patients in the first 24 months on ART, close to 40% of which were amongst patients on stavudine. The decrease in SDS corresponded with the phasing out of stavudine. Competing risks regression models showed that patients on tenofovir were 20-95% less likely to require a SDS than patients on stavudine, whereas patients on zidovudine had a 75-85% decrease in the hazards of SDS when compared to stavudine. CONCLUSION: The decline in SDS in the first 24 months on treatment appears to be associated with phasing out stavudine for zidovudine or tenofovir in first-line ART in our study. Further efforts to decrease the cost of tenofovir and zidovudine for use in this setting is warranted to substitute all patients still receiving stavudine

    Delineating the spatial drivers of agri-environment scheme adoption at field and farm levels

    Get PDF
    Agri-environment schemes (AES), introduced by the EU Common Agricultural Policy (CAP), aim to compensate land owners for implementing environmentally-friendly practices. Whilst literature has examined their effectiveness and how farmer characteristics govern AES adoption, there is a lack of knowledge about the spatial drivers of AES, particularly structural, biophysical and landscape factors in the UK. Using the Humber region as a case study, this paper explores how the uptake of Countryside Stewardship options has varied from 2016 to 2021. It also examines 2500 farms from the field- and farm-level data of 2019 to better understand what type of land British farmers are adopting AES on. Logistic regression analysis is used to identify the factors (including farm and landscape characteristics, designated sites and land quality) that best explain overall AES adoption, as well as specific scheme adoption, at the field- and farm-level. Our analysis reveals that ‘buffer strips’, ‘hedgerow management’, ‘permanent grassland’, and ‘winter bird food’ are the most commonly adopted schemes of 2019. AES are generally adopted on larger fields and farms that feature marginalised, unproductive and vulnerable land, except for ‘buffer strips’ which showed a larger tendency to appear on fields with more profitable, higher quality land. This study, therefore, supports the notion that AES are generally placed on lower quality land and that large proportions of agricultural land owners are not effectively targeted. With the expected loss of direct payments to farmers in the UK as a result of the Department for Environment, Food & Rural Affairs (DEFRA) post-Brexit re-evaluation of rural policy, these results call for the Sustainable Farming Incentive (SFI) to be made more accessible and inclusive to a broader diversity of farmers

    Interdigitation between surface-anchored polymer chains and an elastomer : consequences for adhesion promotion

    Full text link
    We study the adhesion between a cross-linked elastomer and a flat solid surface where polymer chains have been end-grafted. To understand the adhesive feature of such a system, one has to study both the origin of the grafted layer interdigitation with the network, and the end-grafted chains extraction out of the elastomer when it comes unstuck from the solid surface. We shall tackle here the first aspect for which we develop a partial interdigitation model that lets us analytically predict a critical surface grafting density σ∗≃P1/10N−3/5\sigma^{*} \simeq P^{{1/10}}N^{-{3/5}} beyond which the layer no longer interdigitates with the elastomer. We then relate this result with recent adhesion measurements

    Non-Equilibrium in Adsorbed Polymer Layers

    Full text link
    High molecular weight polymer solutions have a powerful tendency to deposit adsorbed layers when exposed to even mildly attractive surfaces. The equilibrium properties of these dense interfacial layers have been extensively studied theoretically. A large body of experimental evidence, however, indicates that non-equilibrium effects are dominant whenever monomer-surface sticking energies are somewhat larger than kT, a common case. Polymer relaxation kinetics within the layer are then severely retarded, leading to non-equilibrium layers whose structure and dynamics depend on adsorption kinetics and layer ageing. Here we review experimental and theoretical work exploring these non-equilibrium effects, with emphasis on recent developments. The discussion addresses the structure and dynamics in non-equilibrium polymer layers adsorbed from dilute polymer solutions and from polymer melts and more concentrated solutions. Two distinct classes of behaviour arise, depending on whether physisorption or chemisorption is involved. A given adsorbed chain belonging to the layer has a certain fraction of its monomers bound to the surface, f, and the remainder belonging to loops making bulk excursions. A natural classification scheme for layers adsorbed from solution is the distribution of single chain f values, P(f), which may hold the key to quantifying the degree of irreversibility in adsorbed polymer layers. Here we calculate P(f) for equilibrium layers; we find its form is very different to the theoretical P(f) for non-equilibrium layers which are predicted to have infinitely many statistical classes of chain. Experimental measurements of P(f) are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GI≪GbG_I \ll G_b
    • …
    corecore