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The enzyme that catalyzes peptidyl transfer is a 
component of the large subunit of ribosomes from 
prokaryotes [1] and eukaryotes [2,3]. The activity 
of the enzyme can be measured apart from the other 
steps in protein synthesis in the "fragment reaction" 
[ 1,4]. With a view to understanding the basis for the 
deficiency in the ability of ribosomes from the muscle 
of alloxan-diabetic rats to synthesize protein [5], we 
have compared the extent to which ribosomes and 
ribosome subunits will carry out the fragment reac- 
tion. In the course of the study we discovered that the 
peptidyl transferase activity of  ribosomes, as measured 
in the fragment reaction, was contingent on the 
amount of  peptidyl-tRNA bound to the particles. 

Peptidyl transferase activity, measured by the for- 
mation of Ac-3H-Leu-puromycin from CACCA-3H- 
Leu-Ac in the fragment reaction, was directly propor- 
tional to the concentration of rat skeletal muscle ribo- 
somes (fig. 1). At concentrations between 0.1 and 0.5 
/aM, diabetic 80 S ribosomes were twice as efficient 
as normal in catalyzing the fragment reaction. The 
same difference in the activity of the ribosomes was 
observed no matter the duration of incubation (be- 
tween 5 and 60 min; results not shown). However, 
equal concentrations of the 60 S subunits (0.42/~M in 
fig. 2; 0.1,0.2, and 0.4/aM in other experiments) 
from normal and diabetic ribosomes had exactly the 
same capacity to effect peptidyl transfer (fig. 2). 
Moreover, we calculated that 60 S subunits were on a 
molar basis more active than 80 S ribosomes in the 
fragment reaction. We found, as had others before [2], 
that the 40 S subunit was inactive in the reaction. 

That peptidyl transfer was greater with equimolar 
amounts of 60 S subunits indicated that some compo- 
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Fig. 1. Effect of concentration of skeletal muscle ribosomes 
from normal and diabetic rats on the catalysis of the fragment 
reaction. Skeletal muscle ribosomes were prepared from nor- 
mal and alloxan-diabetic rats [5]. Peptidyl transfer was meas- 
ured in the fragment reaction: The reaction mixture contained 
(prior to the addition of methanol) ribosomes (in the concen- 
trations indicated), 0.05 M tris-HC1 (pH 7.5), 0.4 M KC1, 0.04 
M Mg acetate, 1 mM puromycin, and 19 nM CACCA-3H-Leu - 
Ac (specific activity 4.1 Ci/mmole) prepared as described by 
Mortro, Cerna and Marcker [6] except that acetylation of 
aH-leucyl-tRNA was carried out according to Lapidot, 
DeGroot and Fry-Shafrir [7].  The fragment reaction was ini- 
tiated by the addition of one-half volume of methanol and 
terminated after 20 rain of incubation at 0 ° by adding an 
equal volume of 0.3 M Na acetate (pH 5.5) saturated with 
MgSO4. [8]. Ac-3H-Leu-puromycin was extracted with ethyl 
acetate [ 8] and its radioactivity determined. The results are 
expressed as the percentag3e of radioactivity in CACCA-aH - 
Leu-Ac transferred to Ac- H-Leu-puromycin.'The amount of 
radioactivity soluble in ethyl acetate in the absence of puro- 
mycin (less than 4% of the total) was substracted from the 

values. 

nent of the 80 S ribosome interfered with the frag- 
ment reaction. Peptidyl-tRNA bound to the ribosome 
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Fig. 2. Time course of Ac-3H-Leu-puromycm formation in 
the fragment reaction by 60 S subunits from normal and 
diabetic rats. Muscle ribosome subunRs were prepared [9] 
and the formation of Ac-3H-Leu-puromycin was determined 
as described in fig. 1. The concentration of 60 S and 40 S sub- 
units before adding methanol was 0.42 and 2.7 pM respec- 

tively. 

might decrease the format ion of  Ac-3H-Leu - 
puromycin  by  preventing access o f  CACCA-3H-Leu - 
Ac to the catalytic center;  since the 60 S subunit  has 
less at tached pept idyl - tRNA it would appear  more 
efficient in the fragment reaction. Moreover, 80 S 
ribosomes from the muscle of  diabetic rats bear half  
as many nascent pept ide chains as normal ribosomes 
[10] - that  might then account for the greater activ- 
i ty of  the former. To test the possibil i ty r ibosomes 
were preincubated in 880 mM KCI with or without  
puromycin  (1 mM) - condit ions that  release peptidyl-  
tRNA from the r ibosome (Stirewalt ,  Castles and 
Wool, in preparat ion).  After preincubation the activity 
of  the ribosomes in the fragment reaction was deter- 
mined (fig. 3). Preincubation for 1 hr at 37 ° in low 
(80 mM) potassium buffer did not  affect the activity 
of  the particles; however,  preincubation in high potas- 
sium (880 mM) increased Ac-3H-Leu-puromycin for- 
mat ion 2.5 fold and addi t ion o f  puromycin (1 mM) 
to the high potassium buffer increased activity 4 fold. 
The pept idyl  transferase activity of  normal ribosomes 
was increased to a greater degree than that  of  diabetic 
ribosomes by preincubation in 880 mM KC1 and 1 mM 
puromycin (table 1) - but  the critical observation is 
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Fig. 3. Effect of preincubation of normal 80 S ribosomes on 
the time course of Ac-3H-Leu-puromycin formation in the 
fragment reaction. Ribosomes were preincubated at 37 ° for 
1 hr in: 
A-a 50 mM-tris HC1 (pH 7.5), 12.5 mM MgG12, 80 mM KC1; 
zx_zx 50 mM-tris HC1 (pH 7.5), 12.5 mM MgC12, 880 mM KCI; 
o - o  50 mM-tris HC1 (pH 7.5), 12.5 mM MgC12, 880 mM KC1, 

1 mM puromycin; 
o - e  control, no preincubation. 

The concentration of ribosomes was 0.25 ~aM. Other 
conditions are described in the legend of fig. 1. 

Table 1 
Effect of preincubation of 80 S normal and diabetic muscle 
ribosomes on Ac-3H-Leu-puromycin formation in the frag- 

ment reaction. 

Conditions of preincubation Ac 23 H-Leu-puromycin 
formation 

(%) 

80 S ribosomes 

Normal Diabetic 

Exp. 1 
None 8 21 
37 °, 880 mM KC1, puromycin 26 26 

Exp. 2 
None 6 18 
37 °, 80 mM KCI 6 19 
37 °, 880 mM KC1 15 24 
37 °, 880 mM KC1, puromycin 27 28 

Preincubation was for 1 hr in 50 mM tris, 12.5 mM MgCI2, 
and the concentration of KCI indicated; 1 mM puromycin was 
added where indicated. Ac-3H-Leu-puromycin formation in 
the fragment reaction was measured after 20 rain of incubation 
at 0 °. The concentration of ribosomes was 0.25 pM. Other 
conditions axe described in the legend of fig. 1. 
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that after preincubation in high potassium and puro- 
mycin the activity of normal and diabetic ribosomes 
is the same (table 1). Moreover, we calculate that pre- 
incubated normal and diabetic ribosomes had the 
same activity as equimolar amounts of 60 S subunits. 
Silverstein [11] had also found that preincubation in 
high potassium buffer enhanced the ability ofE. coli 
ribosomes to carry out the fragment reaction. 

In 880 mM KC1, approximately half the peptidyl- 
tRNA bound to muscle ribosomes is released; if puro- 
mycin is added the release of nascent chains is in- 
creased to 90% (Stirewalt, Castles and Wool, in prepa- 
ration). That similar treatment increased the activity 
of the ribosomes in the fragment reaction to a like 
degree, accords with the conclusion that peptidyl- 
tRNA prevents interaction of either the fragment or 
puromycin (or both) with peptidyl transferase. Differ- 
ent amounts of attached peptidyl-tRNA may also ex- 
plain the difference in activity of canine liver [I 2] or 
human tonsil [3] and rat liver 80 S ribosomes. At 
any rate the results underscore the importance of 
peptidyl-tRNA in estimating the true peptidyl trans- 
ferase activity of ribosomes. 

Ribosomes from the muscle of diabetic rats are 
less efficient than normal in endogenous protein syn- 
thesis; administration of insulin to diabetic animals 
restores activity of the particles to normal [5,13]. 
Modulation of protein synthesis by insulin is not 
likely to be mediated by an effect on peptidyl trans- 
ferase since normal and diabetic ribosomes, and nor- 
mal and diabetic 60 S subunits, had equal activity in 
the fragment reaction, once proper allowance was 
made for the disproportionate amounts of bound 
peptidyl-tRNA. One reservation need be kept in mind: 
the alcohol used in the fragment reaction may gene- 
rate maximum peptidyl transferase activity, whereas 
in physiological circumstances a portion of that ac- 

tivity may be restrained. If  that is the case, there could 
be a difference in the peptidyl transferase activity of 
normal and diabetic ribosomes which would not be 
revealed in the fragment reaction. 
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