18 research outputs found

    Silica nanoparticles in transmucosal drug delivery

    Get PDF
    Transmucosal drug delivery includes the administration of drugs via various mucous membranes, such as gastrointestinal, nasal, ocular, and vaginal mucosa. The use of nanoparticles in transmucosal drug delivery has several advantages, including the protection of drugs against the harsh environment of the mucosal lumens and surfaces, increased drug residence time, and enhanced drug absorption. Due to their relatively simple synthetic methods for preparation, safety profile, and possibilities of surface functionalisation, silica nanoparticles are highly promising for transmucosal drug delivery. This review provides a description of silica nanoparticles and outlines the preparation methods for various core and surface-functionalised silica nanoparticles. The relationship between the functionalities of silica nanoparticles and their interactions with various mucous membranes are critically analysed. Applications of silica nanoparticles in transmucosal drug delivery are also discussed

    Penetration Enhancement of Topical Formulations

    No full text
    This special issue, which is entitled “Penetration Enhancement of Topical Formulations”, presents a selection of the latest research that elucidates the challenges facing topical formulations for human skin in addition to proposing interesting solutions.[…

    Skin deep: the basics of human skin structure and drug penetration

    No full text

    Poly(lactic) acid/carbon nanotube composite microneedle arrays for dermal biosensing

    No full text
    Minimally invasive, reliable and low-cost in vivo biosensors that enable real-time detection and monitoring of clinically relevant molecules and biomarkers can significantly improve patient health care. Microneedle array (MNA)-based electrochemical sensors offer exciting prospects in this respect, as they can sample directly from the skin. However, their acceptability is dependent on developing a highly scalable and cost-effective fabrication strategy. In this work, we evaluated the potential for poly­(lactic acid)/carboxyl-multiwalled carbon nanotube (PLA/<i>f</i>-MWCNT) composites to be developed into MNAs and their effectiveness for dermal biosensing. Our results show that MNAs are easily made from solvent-cast nanocomposite films by micromolding. A maximum carbon nanotube (CNT) loading of 6 wt % was attained with the current fabrication method. The MNAs were mechanically robust, being able to withstand axial forces up to 4 times higher than necessary for skin insertion. Electrochemical characterization of these MNAs by differential pulse voltammetry (DPV) produced a linear current response toward ascorbic acid, with a limit of detection of 180 μM. In situ electrochemical performance was assessed by DPV measurements in ex vivo porcine skin. This showed active changes characterized by two oxidative peaks at 0.23 and 0.69 V, as a result of the diffusion of phosphate-buffered saline. The diagnostic potential of this waveform was further evaluated through a burn wound model. This showed an attenuated oxidative response at 0.69 V. Importantly, the impact of the burn could be measured at progressive distances from the burn site. Overall, alongside the scalable fabrication strategy, the DPV results promise efficient electrochemical biosensors based on CNT nanocomposite MNAs

    Distribution of esterase activity in porcine ear skin, and the effects of freezing and heat separation

    No full text
    Porcine ear skin is widely used to study skin permeation and absorption of ester compounds, whose permeation and absorption profiles may be directly influenced by in situ skin esterase activity. Importantly, esterase distribution and activity in porcine ear skin following common protocols of skin handling and storage have not been characterised. Thus, we have compared the distribution and hydrolytic activity of esterases in freshly excised, frozen, heated and explanted porcine ear skin. Using an esterase staining kit, esterase activity was found to be localised in the stratum corneum and viable epidermis. Under frozen storage and a common heating protocol of epidermal sheet separation, esterase staining in the skin visibly diminished. This was confirmed by a quantitative assay using HPLC to monitor the hydrolysis of aspirin, in freshly excised, frozen or heated porcine ear skin. Compared to vehicle-only control, the rate of aspirin hydrolysis was approximately three-fold higher in the presence of freshly excised skin, but no different in the presence of frozen or heated skin. Therefore, frozen and heat-separated porcine ear skin should not be used to study the permeation of ester-containing permeants, in particular co-drugs and pro-drugs, whose hydrolysis or degradation can be modulated by skin esterases

    A novel versatile animal-free 3D tool for rapid low-cost assessment of immunodiagnostic microneedles

    No full text
    Microneedle devices offer minimally invasive and rapid biomarker extraction from the skin. However, the lack of effective assessment tools for such microneedle devices can delay their development into useful clinical applications. Traditionally, the microneedle performance is evaluated i) in vivo, using animal models, ii) ex vivo, on excised human or animal skin or iii) in vitro, using homogenised solutions with the target antigen to model the interstitial fluid. In vivo and ex vivo models are considered the gold-standard approach for the evaluation of microneedle devices because of their structural composition, however they do exhibit limitations. More specifically, they have limited availability and they present batch-to-batch variations depending on the skin origin. Furthermore, their use rises ethical concerns regarding compliance with the globally accepted 3Rs principle of reducing the use of animals for research purposes. At the same time, in vitro models fail to accurately mimic the structure and the mechanical integrity of the skin tissue that surrounds the interstitial fluid. In this study, we introduce for the first time an animal-free, mechanically robust, 3D scaffold that has great potential as an accurate in vitro evaluation tool for immunodiagnostic microneedle devices. More specifically, we demonstrate, for the first time, successful extraction and detection of a melanoma biomarker (S100B) using immunodiagnostic microneedles in the 3D culture system. Melanoma cells (A375) were cultured and expanded for 35 days in the highly porous polymeric scaffold followed by in situ capture of S100B with the microneedle device. Scanning electron microscopy showed a close resemblance between the 3D scaffold and human skin in terms of internal structure and porosity. The microneedle device detected S100B in the scaffold (with a detection pattern similar to the positive controls), while the biomarker was not detected in the surrounding liquid supernatants. Our findings demonstrate the great potential of this animal-free 3D tool for rapid and low-cost evaluation of microneedle devices
    corecore