164 research outputs found
Fanconi Anaemia, Childhood Cancer and the BRCA Genes
From MDPI via Jisc Publications RouterHistory: accepted 2021-09-25, pub-electronic 2021-09-27Publication status: PublishedFunder: Fanconi Hope, UK; Grant(s): 01-2020Fanconi anaemia (FA) is an inherited chromosomal instability disorder characterised by congenital and developmental abnormalities and a strong cancer predisposition. In less than 5% of cases FA can be caused by bi-allelic pathogenic variants (PGVs) in BRCA2/FANCD1 and in very rare cases by bi-allelic PGVs in BRCA1/FANCS. The rarity of FA-like presentation due to PGVs in BRCA2 and even more due to PGVs in BRCA1 supports a fundamental role of the encoded proteins for normal development and prevention of malignant transformation. While FA caused by BRCA1/2 PGVs is strongly associated with distinct spectra of embryonal childhood cancers and AML with BRCA2-PGVs, and also early epithelial cancers with BRCA1 PGVs, germline variants in the BRCA1/2 genes have also been identified in non-FA childhood malignancies, and thereby implying the possibility of a role of BRCA PGVs also for non-syndromic cancer predisposition in children. We provide a concise review of aspects of the clinical and genetic features of BRCA1/2-associated FA with a focus on associated malignancies, and review novel aspects of the role of germline BRCA2 and BRCA1 PGVs occurring in non-FA childhood cancer and discuss aspects of clinical and biological implications
Parity and breast cancer risk among BRCA1 and BRCA2 mutation carriers.
INTRODUCTION: Increasing parity and age at first full-term pregnancy are established risk factors for breast cancer in the general population. However, their effects among BRCA1 and BRCA2 mutation carriers is still under debate. We used retrospective data on BRCA1 and BRCA2 mutation carriers from the UK to assess the effects of parity-related variables on breast cancer risk. METHODS: The data set included 457 mutation carriers who developed breast cancer (cases) and 332 healthy mutation carriers (controls), ascertained through families seen in genetic clinics. Hazard ratios were estimated by using a weighted cohort approach. RESULTS: Parous BRCA1 and BRCA2 mutation carriers were at a significantly lower risk of developing breast cancer (hazard ratio 0.54, 95% confidence interval 0.37 to 0.81; p = 0.002). The protective effect was observed only among carriers who were older than 40 years. Increasing age at first live birth was associated with an increased breast cancer risk among BRCA2 mutation carriers (p trend = 0.002) but not BRCA1 carriers. However, the analysis by age at first live birth was based on small numbers. CONCLUSION: The results suggest that the relative risks of breast cancer associated with parity among BRCA1 and BRCA2 mutation carriers may be similar to those in the general population and that reproductive history may be used to improve risk prediction in carriers.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Penetrance estimates for BRCA1, BRCA2 (also applied to Lynch syndrome) based on presymptomatic testing: a new unbiased method to assess risk?
PURPOSE: The identification of BRCA1, BRCA2 or mismatch repair (MMR) pathogenic gene variants in familial breast/ovarian/colorectal cancer families facilitates predictive genetic testing of at-risk relatives. However, controversy still exists regarding overall lifetime risks of cancer in individuals testing positive. METHODS: We assessed the penetrance of BRCA1, BRCA2, MLH1 and MSH2 mutations in men and women using Bayesian calculations based on ratios of positive to negative presymptomatic testing by 10-year age cohorts. Mutation position was also assessed for BRCA1/BRCA2. RESULTS: Using results from 2264 presymptomatic tests in first-degree relatives (FDRs) of mutation carriers in BRCA1 and BRCA2 and 646 FDRs of patients with MMR mutations, we assessed overall associated cancer penetrance to age of 68 years as 73% (95% CI 61% to 82%) for BRCA1, 60% (95% CI 49% to 71%) for BRCA2, 95% (95% CI 76% to 99%) for MLH1% and 61% (95% CI 49% to 76%) for MSH2. There was no evidence for significant penetrance for males in BRCA1 or BRCA2 families and males had equivalent penetrance to females with Lynch syndrome. Mutation position and degree of family history influenced penetrance in BRCA2 but not BRCA1. CONCLUSION: We describe a new method for assessing penetrance in cancer-prone syndromes. Results are in keeping with published prospective series and present modern-day estimates for overall disease penetrance that bypasses retrospective series biases
Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity.
Inherited renal cell carcinoma (RCC) is associated with multiple familial cancer syndromes but most individuals with features of non-syndromic inherited RCC do not harbor variants in the most commonly tested renal cancer predisposition genes (CPGs). We investigated whether undiagnosed cases might harbor mutations in CPGs that are not routinely tested for by testing 118 individuals with features suggestive of inherited RCC (family history of RCC, two or more primary RCC aged <60 years, or early onset RCC ≤46 years) for the presence of pathogenic variants in a large panel of CPGs. All individuals had been prescreened for pathogenic variants in the major RCC genes. We detected pathogenic or likely pathogenic (P/LP) variants of potential clinical relevance in 16.1% (19/118) of individuals, including P/LP variants in BRIP1 (n = 4), CHEK2 (n = 3), MITF (n = 1), and BRCA1 (n = 1). Though the power to detect rare variants was limited by sample size the frequency of truncating variants in BRIP1, 4/118, was significantly higher than in controls (P = 5.92E-03). These findings suggest that the application of genetic testing for larger inherited cancer gene panels in patients with indicators of a potential inherited RCC can increase the diagnostic yield for P/LP variants. However, the clinical utility of such a diagnostic strategy requires validation and further evaluation and in particular, confirmation of rarer RCC genotype-phenotype associations is required
Real-World Concordance between Germline and Tumour <i>BRCA1/2</i> Status in Epithelial Ovarian Cancer
Patients diagnosed with epithelial ovarian cancer may undergo reflex tumour BRCA1/ 2 testing followed by germline BRCA1/2 testing in patients with a positive tumour test result. This testing model relies on tumour BRCA1/ 2 tests being able to detect all types of pathogenic variant. We analysed germline and tumour BRCA1/2 test results from patients treated for epithelial ovarian cancer at our specialist oncological referral centre. Tumour BRCA1/2 testing was performed using the next-generation sequencing (NGS)-based myChoice ® companion diagnostic (CDx; Myriad Genetics, Inc.). Germline BRCA1/2 testing was performed in the North West Genomic Laboratory Hub using NGS and multiplex ligation-dependent probe amplification. Between 11 April 2021 and 11 October 2023, 382 patients were successfully tested for tumour BRCA1 and BRCA2 variants. Of these, 367 (96.1%) patients were tested for germline BRCA1/ 2 variants. In those patients who underwent tumour and germline testing, 15.3% (56/367) had a BRCA1/ 2 pathogenic variant (36 germline and 20 somatic). All germline BRCA1/2 pathogenic small sequencing variants were detected in tumour DNA. By contrast, 3 out of 8 germline BRCA1/2 pathogenic large rearrangements were not reported in tumour DNA. The overall concordance of germline BRCA1/2 pathogenic variants detected in germline and tumour DNA was clinically acceptable at 91.7% (33/36). The myChoice ® CDx was able to detect most germline BRCA1/2 pathogenic variants in tumour DNA, although a proportion of pathogenic large rearrangements were not reported. If Myriad's myChoice ® CDx is used for tumour BRCA1/2 testing, our data supports a testing strategy of germline and tumour BRCA1/2 testing in all patients diagnosed with epithelial ovarian cancer aged < 79 years old, with germline BRCA1/2 testing only necessary for patients aged ≥ 80 years old with a tumour BRCA1/2 pathogenic variant. </p
Investigation and Management of Apparently Sporadic Central Nervous System Haemangioblastoma for Evidence of Von Hippel-Lindau Disease.
Haemangioblastomas are rare, highly vascularised tumours that typically occur in the cerebellum, brain stem and spinal cord. Up to a third of individuals with a haemangioblastoma will have von Hippel-Lindau (VHL) disease. Individuals with haemangioblastoma and underlying VHL disease present, on average, at a younger age and frequently have a personal or family history of VHL disease-related tumours (e.g., retinal or central nervous system (CNS) haemangioblastomas, renal cell carcinoma, phaeochromocytoma). However, a subset present an apparently sporadic haemangioblastoma without other features of VHL disease. To detect such individuals, it has been recommended that genetic testing and clinical/radiological assessment for VHL disease should be offered to patients with a haemangioblastoma. To assess "real-world" clinical practice, we undertook a national survey of clinical genetics centres. All participating centres responded that they would offer genetic testing and a comprehensive assessment (ophthalmological examination and CNS and abdominal imaging) to a patient presenting with a CNS haemangioblastoma. However, for individuals who tested negative, there was variability in practice with regard to the need for continued follow-up. We then reviewed the results of follow-up surveillance in 91 such individuals seen at four centres. The risk of developing a potential VHL-related tumour (haemangioblastoma or RCC) was estimated at 10.8% at 10 years follow-up. The risks of developing a recurrent haemangioblastoma were higher in those who presented <40 years of age. In the light of these and previous findings, we propose an age-stratified protocol for surveillance of VHL-related tumours in individuals with apparently isolated haemangioblastoma.NIHR Cambridge Biomedical Research Centre,
VHL Alliance UK,
NIHR Manchester Biomedical Research Centre (IS-BRC-1215-20007
Recommended from our members
Characterization of renal cell carcinoma-associated constitutional chromosome abnormalities by genome sequencing.
Constitutional translocations, typically involving chromosome 3, have been recognized as a rare cause of inherited predisposition to renal cell carcinoma (RCC) for four decades. However, knowledge of the molecular basis of this association is limited. We have characterized the breakpoints by genome sequencing (GS) of constitutional chromosome abnormalities in five individuals who presented with RCC. In one individual with constitutional t(10;17)(q11.21;p11.2), the translocation breakpoint disrupted two genes: the known renal tumor suppressor gene (TSG) FLCN (and clinical features of Birt-Hogg-Dubé syndrome were detected) and RASGEF1A. In four cases, the rearrangement breakpoints did not disrupt known inherited RCC genes. In the second case without chromosome 3 involvement, the translocation breakpoint in an individual with a constitutional t(2;17)(q21.1;q11.2) mapped 12 Kb upstream of NLK. Interestingly, NLK has been reported to interact indirectly with FBXW7 and a previously reported RCC-associated translocation breakpoint disrupted FBXW7. In two cases of constitutional chromosome 3 translocations, no candidate TSGs were identified in the vicinity of the breakpoints. However, in an individual with a constitutional chromosome 3 inversion, the 3p breakpoint disrupted the FHIT TSG (which has been reported previously to be disrupted in two apparently unrelated families with an RCC-associated t(3;8)(p14.2;q24.1). These findings (a) expand the range of constitutional chromosome rearrangements that may be associated with predisposition to RCC, (b) confirm that chromosome rearrangements not involving chromosome 3 can predispose to RCC, (c) suggest that a variety of molecular mechanisms are involved the pathogenesis of translocation-associated RCC, and (d) demonstrate the utility of GS for investigating such cases
Dialogue across Indigenous, local and scientific knowledge systems reflecting on the IPBES Assessment on Pollinators, Pollination and Food Production
The Dialogue across Indigenous, local and scientific knowledge systems reflecting on the IPBES Assessment on Pollinators, Pollination and Food Production report presents the main outcomes of a Dialogue across Indigenous, local and scientific knowledge systems that revisited and reflected on the key messages derived from the Assessment Report on Pollinators, Pollination and Food Production of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). The Dialogue was hosted from the 21st to the 25th of January 2019 by the Karen community of Hin Lad Nai, Chiang Rai, Thailand, and it was co-convened and jointly designed by the Inter Mountain Peoples Education and Culture in Thailand Association (IMPECT) and Pgakenyaw Association for Sustainable Development (PASD) together with SwedBio at the Stockholm Resilience Centre and UNESCO Natural Science Sector
Distal Spinal Nerve Development and Divergence of Avian Groups
The avian transition from long to short, distally fused tails during the Mesozoic ushered in the Pygostylian group, which includes modern birds. The avian tail embodies a bipartite anatomy, with the proximal separate caudal vertebrae region, and the distal pygostyle, formed by vertebral fusion. This study investigates developmental features of the two tail domains in different bird groups, and analyzes them in reference to evolutionary origins. We first defined the early developmental boundary between the two tail halves in the chicken, then followed major developmental structures from early embryo to post-hatching stages. Differences between regions were observed in sclerotome anterior/posterior polarity and peripheral nervous system development, and these were consistent in other neognathous birds. However, in the paleognathous emu, the neognathous pattern was not observed, such that spinal nerve development extends through the pygostyle region. Disparities between the neognaths and paleognaths studied were also reflected in the morphology of their pygostyles. The ancestral long-tailed spinal nerve configuration was hypothesized from brown anole and alligator, which unexpectedly more resembles the neognathous birds. This study shows that tail anatomy is not universal in avians, and suggests several possible scenarios regarding bird evolution, including an independent paleognathous long-tailed ancestor
- …