4 research outputs found

    Denosumab densitometric changes assessed by quantitative computed tomography at the spine and hip in postmenopausal women with osteoporosis

    No full text
    FREEDOM was a phase 3 trial in 7808 women aged 60-90 yr with postmenopausal osteoporosis. Subjects received placebo or 60 mg denosumab subcutaneously every 6 mo for 3 yr in addition to daily calcium and vitamin D. Denosumab significantly decreased bone turnover; increased dual-energy X-ray absorptiometry (DXA) areal bone mineral density (aBMD); and significantly reduced new vertebral, nonvertebral, and hip fractures. In a subset of women (N = 209), lumbar spine, total hip, and femoral neck volumetric BMD (vBMD) were assessed by quantitative computed tomography at baseline and months 12, 24, and 36. Significant improvement from placebo and baseline was observed in aBMD and vBMD in the denosumab-treated subjects at all sites and time points measured. The vBMD difference from placebo reached 21.8%, 7.8%, and 5.9%, respectively, for the lumbar spine, total hip, and femoral neck at 36 mo (all p < 0.0001). Compared with placebo and baseline, significant increases were also observed in bone mineral content (BMC) at the total hip (p < 0.0001) largely related to significant BMC improvement in the cortical compartment (p < 0.0001). These results supplement the data from DXA on the positive effect of denosumab on BMD in both the cortical and trabecular compartments

    A Longitudinal Study of Skeletal Histomorphometry at 6 and 24 Months Across Four Bone Envelopes in Postmenopausal Women With Osteoporosis Receiving Teriparatide or Zoledronic Acid in the SHOTZ Trial

    No full text
    Previously, we reported the effects of teriparatide (TPTD) and zoledronic acid (ZOL) on bone formation based on biochemical markers and bone histomorphometry of the cancellous envelope at month 6 in postmenopausal women with osteoporosis who participated in the 12-month primary Skeletal Histomorphometry in Subjects on Teriparatide or Zoledronic Acid Therapy (SHOTZ) study. Patients were eligible to enter a 12-month extension on their original treatment regimen: TPTD 20 μg/day (s.c. injection) or ZOL 5 mg/year (i.v. infusion). A second biopsy was performed at month 24. Here we report longitudinal changes between and within each treatment group in the cancellous, endocortical, intracortical, and periosteal bone envelopes in patients with evaluable biopsies at months 6 and 24 (paired data set: TPTD, n = 10; ZOL, n = 9). Between-group differences are also reported in the larger set of patients with evaluable biopsies at month 6 (TPTD, n = 28; ZOL, n = 30). Data from the cancellous envelope at month 6 or month 24 provided a reference to compare differences across envelopes within each treatment group. The 24-month results extend our earlier report that TPTD and ZOL possess different tissue-level mechanisms of action. Moreover, these differences persisted for at least 2 years in all four bone envelopes. Few longitudinal differences were observed within or across bone envelopes in ZOL-treated patients, suggesting that the low bone formation indices at month 6 persisted to month 24. Conversely, the magnitude of the effect of TPTD on bone formation varied across individual envelopes: median values for mineralizing surface (MS/BS) and bone formation rate (BFR/BS) at month 6 were approximately 3-fold to 5-fold higher in the endocortical and intracortical envelopes compared to the cancellous envelope. Although MS/BS and BFR/BS declined in these envelopes at month 24, median values continued to exceed, or were not significantly different from, those in the cancellous envelope. This study demonstrates for the first time that bone formation indices are higher with TPTD treatment than with ZOL in all four bone envelopes and the difference persists for at least 2 years. Moreover, the magnitude of the effect of TPTD in cortical bone remains robust at 24 months
    corecore