7,880 research outputs found

    Phonon Life-times from first principles self consistent lattice dynamics

    Full text link
    Phonon lifetime calculations from first principles usually rely on time consuming molecular dynamics calculations, or density functional perturbation theory (DFPT) where the zero temperature crystal structure is assumed to be dynamically stable. Here a new and effective method for calculating phonon lifetimes from first principles is presented, not limited to crystal structures stable at 0 K, and potentially much more effective than most corresponding molecular dynamics calculations. The method is based on the recently developed self consistent lattice dynamical method and is here tested by calculating the bcc phase phonon lifetimes of Li, Na, Ti and Zr, as representative examples.Comment: 4 pages, 4 figur

    Strong exciton-plasmon coupling in semiconducting carbon nanotubes

    Full text link
    We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupling. The exciton absorption line shape exhibits Rabi splitting ~0.1 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube. We also show that the quantum confined Stark effect may be used as a tool to control the exciton binding energy and the nanotube band gap in carbon nanotubes in order, e.g., to bring the exciton total energy in resonance with the nearest interband plasmon mode. The exciton-plasmon Rabi splitting we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors on metallic films. We expect this effect to open up paths to new tunable optoelectronic device applications of semiconducting carbon nanotubes.Comment: 22 pages, 8 figures, accepted for PR

    Prediction of strong shock structure using the bimodal distribution function

    Full text link
    A modified Mott-Smith method for predicting the one-dimensional shock wave solution at very high Mach numbers is constructed by developing a system of fluid dynamic equations. The predicted shock solutions in a gas of Maxwell molecules, a hard sphere gas and in argon using the newly proposed formalism are compared with the experimental data, direct-simulation Monte Carlo (DSMC) solution and other solutions computed from some existing theories for Mach numbers M<50. In the limit of an infinitely large Mach number, the predicted shock profiles are also compared with the DSMC solution. The density, temperature and heat flux profiles calculated at different Mach numbers have been shown to have good agreement with the experimental and DSMC solutionsComment: 22 pages, 9 figures, Accepted for publication in Physical Review

    Genetic Studies of Sulfadiazine-resistant and Methionine-requiring \u3cem\u3eNeisseria\u3c/em\u3e Isolated From Clinical Material

    Get PDF
    Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met−). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met− loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met− properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met− clones tested against recipients having nonidentical Sul-r/Met− mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species

    A stacking-fault based microscopic model for platelets in diamond

    Get PDF
    We propose a new microscopic model for the {001}\{001\} planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp2sp^2 carbon atoms embedded in the common sp3sp^3 diamond structure. The properties of the model were determined using {\it ab initio} total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001][001] direction, the asymmetry between the [110][110] and the [11ˉ0][1\bar{1}0] directions, the infrared absorption peak B′B^\prime, and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Comment: 5 pages, 4 figures. Submitted for publication on August 2nd, 200

    Variations on the Deuteron

    Get PDF
    We consider few problems which are related to the deuteron and have simple analytical solution. Relation is found between the deuteron electric quadrupole moment and the npnp-scattering amplitude. The degree of circular polarization of photons is calculated for the radiative capture of longitudinally polarized thermal neutrons. The anapole, electric dipole and magnetic quadrupole moments of the deuteron are calculated.Comment: 14 pages, late

    Breit interaction correction to the hyperfine constant of an external s-electron in many-electron atom

    Full text link
    Correction to the hyperfine constant AA of an external s-electron in many-electron atom caused by the Breit interaction is calculated analytically: δA/A=0.68Zα2\delta A/A =0.68 Z\alpha^2. Physical mechanism for this correction is polarization of the internal electronic shells (mainly 1s21s^2 shell) by the magnetic field of the external electron. This mechanism is similar to the polarization of vacuum considered by Karplus and Klein long time ago. The similarity is the reason why in both cases (Dirac sea polarization and internal atomic shells polarization) the corrections have the same dependence on the nuclear charge and fine structure constant. In conclusion we also discuss Zα2Z\alpha^2 corrections to the parity violation effects in atoms.Comment: 8 pages, 2 figure

    Parity nonconservation effects in the photodesintegration of polarized deuterons

    Get PDF
    P-odd correlations in the deuteron photodesintegration are considered. The π\pi-meson exchange is not operative in the case of unpolarized deuterons. For polarized deuterons a P-odd correlation due to the π\pi-meson exchange is about 3×10−93 \times 10^{-9}. Short-distance P-odd contributions exceed essentially than the contribution of the π\pi-meson exchange.Comment: 12 pages, Latex, 3 figure

    Statistical properties of SGR 1900+14 bursts

    Get PDF
    We study the statistics of soft gamma repeater (SGR) bursts, using a data base of 187 events detected with BATSE and 837 events detected with RXTE PCA, all from SGR 1900+14 during its 1998-1999 active phase. We find that the fluence or energy distribution of bursts is consistent with a power law of index 1.66, over 4 orders of magnitude. This scale-free distribution resembles the Gutenberg-Richter Law for earthquakes, and gives evidence for self-organized criticality in SGRs. The distribution of time intervals between successive bursts from SGR 1900+14 is consistent with a log-normal distribution. There is no correlation between burst intensity and the waiting times till the next burst, but there is some evidence for a correlation between burst intensity and the time elapsed since the previous burst. We also find a correlation between the duration and the energy of the bursts, but with significant scatter. In all these statistical properties, SGR bursts resemble earthquakes and solar flares more closely than they resemble any known accretion-powered or nuclear-powered phenomena. Thus our analysis lends support to the hypothesis that the energy source for SGR bursts is internal to the neutron star, and plausibly magnetic.Comment: 11 pages, 4 figures, accepted for publication in ApJ
    • …
    corecore