1,601 research outputs found

    The SAGE-Spec Spitzer Legacy programme: the life-cycle of dust and gas in the Large Magellanic Cloud – Point source classification I

    Get PDF
    We present the classification of 197 point sources observed with the Infrared Spectrograph in the SAGE-Spec Legacy programme on the Spitzer Space Telescope. We introduce a decision-tree method of object classification based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information, which is used to classify the SAGE-Spec sample of point sources. The decision tree has a broad application to mid-infrared spectroscopic surveys, where supporting photometry and variability information are available. We use these classifications to make deductions about the stellar populations of the Large Magellanic Cloud and the success of photometric classification methods. We find 90 asymptotic giant branch (AGB) stars, 29 young stellar objects, 23 post-AGB objects, 19 red supergiants, eight stellar photospheres, seven background galaxies, seven planetary nebulae, two H_(II) regions and 12 other objects, seven of which remain unclassified

    The Fourth Positive System of Carbon Monoxide in the Hubble Space Telescope Spectra of Comets

    Full text link
    The rich structure of the Fourth Positive System (A-X) of carbon monoxide accounts for many of the spectral features seen in long slit HST-STIS observations of comets 153P/Ikeya-Zhang, C/2001 Q4 (NEAT), and C/2000 WM1 (LINEAR), as well as in the HST-GHRS spectrum of comet C/1996 B2 Hyakutake. A detailed CO fluorescence model is developed to derive the CO abundances in these comets by simultaneously fitting all of the observed A-X bands. The model includes the latest values for the oscillator strengths and state parameters, and accounts for optical depth effects due to line overlap and self-absorption. The model fits yield radial profiles of CO column density that are consistent with a predominantly native source for all the comets observed by STIS. The derived CO abundances relative to water in these comets span a wide range, from 0.44% for C/2000 WM1 (LINEAR), 7.2% for 153P/Ikeya-Zhang, 8.8% for C/2001 Q4 (NEAT) to 20.9% for C/1996 B2 (Hyakutake). The subtraction of the CO spectral features using this model leads to the first identification of a molecular hydrogen line pumped by solar HI Lyman-beta longward of 1200A in the spectrum of comet 153P/Ikeya-Zhang. (Abridged)Comment: 12 pages, 11 figures, ApJ accepte

    Maintenance of S. aureus in Co-culture With P. aeruginosa While Growing as Biofilms

    Get PDF
    Bacterial biofilms are found in various environmental niches and are mostly comprised by two or more bacterial species. One such example, are the mixed species bacterial biofilms found in chronic lung infections of cystic fibrosis (CF) patients, which include the Staphylococcus aureus and Pseudomonas aeruginosa bacterial species. S. aureus is one of the CF lung initial colonizers and is assumed to be abrogated when P. aeruginosa becomes established, eliminating its involvement as the infection evolves. Common models used in research do not mimic the actual progression of the mixed species biofilms thus, in this work we developed an in vitro model, where S. aureus biofilms establish prior to the introduction of P. aeruginosa, simulating a state that is phenotypically more similar to the one found in CF lungs. Overall our results demonstrate that S. aureus is not outcompeted, and that timing of inoculation and bacterial concentration affect the final bacterial ratio and quorum sensing related gene expression during the dual species biofilm development

    Frog nest foams exhibit pharmaceutical foam-like properties

    Get PDF
    Foams have frequently been used as systems for the delivery of cosmetic and therapeutic molecules; however, there is high variability in the foamability and long-term stability of synthetic foams. The development of pharmaceutical foams that exhibit desirable foaming properties, delivering appropriate amounts of the active pharmaceutical ingredient (API) and that have excellent biocompatibility is of great interest. The production of stable foams is rare in the natural world; however, certain species of frogs have adopted foam production as a means of providing a protective environment for their eggs and larvae from predators and parasites, to prevent desiccation, to control gaseous exchange, to buffer temperature extremes, and to reduce UV damage. These foams show great stability (up to 10 days in tropical environments) and are highly biocompatible due to the sensitive nature of amphibian skin. This work demonstrates for the first time that nests of the tĂșngara frog ( Engystomops pustulosus ) are stable ex situ with useful physiochemical and biocompatible properties and are capable of encapsulating a range of compounds, including antibiotics. These protein foam mixtures share some properties with pharmaceutical foams and may find utility in a range of pharmaceutical applications such as topical drug delivery systems

    Heterogeneity in the effectiveness of non-pharmaceutical interventions during the first SARS-CoV2 wave in the United States

    Get PDF
    Background: Attempts to quantify effect sizes of non-pharmaceutical interventions (NPI) to control COVID-19 in the US have not accounted for heterogeneity in social or environmental factors that may influence NPI effectiveness. This study quantifies national and sub-national effect sizes of NPIs during the early months of the pandemic in the US. Methods: Daily county-level COVID-19 cases and deaths during the first wave (January 2020 through phased removal of interventions) were obtained. County-level cases, doubling times, and death rates were compared to four increasingly restrictive NPI levels. Socio-demographic, climate and mobility factors were analyzed to explain and evaluate NPI heterogeneity, with mobility used to approximate NPI compliance. Analyses were conducted separately for the US and for each Census regions (Pacific, Mountain, east/West North Central, East/West South Central, South Atlantic, Middle Atlantic and New England). A stepped-wedge cluster-randomized trial analysis was used, leveraging the phased implementation of policies. Results: Aggressive (level 4) NPIs were associated with slower COVID-19 propagation, particularly in high compliance counties. Longer duration of level 4 NPIs was associated with lower case rates (log beta -0.028, 95% CI -0.04 to -0.02) and longer doubling times (log beta 0.02, 95% CI 0.01–0.03). Effects varied by Census region, for example, level 4 effects on doubling time in Pacific states were opposite to those in Middle Atlantic and New England states. NPI heterogeneity can be explained by differential timing of policy initiation and by variable socio-demographic county characteristics that predict compliance, particularly poverty and racial/ethnic population. Climate exhibits relatively consistent relationships across Census regions, for example, higher minimum temperature and specific humidity were associated with lower doubling times and higher death rates for this period of analysis in South Central, South Atlantic, Middle Atlantic, and New England states. Conclusion and Relevance: Heterogeneity exists in both the effectiveness of NPIs across US Census regions and policy compliance. This county-level variability indicates that control strategies are best designed at community-levelswhere policies can be tuned based on knowledge of local disparities and compliance with public health ordinances.Peer ReviewedPostprint (published version

    Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Get PDF
    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC)

    A Cascade Of Models To Guide Reservoir Operations: Application On The Deadwood River System, Idaho, USA

    Full text link
    Adaptive management strategies are increasingly being used by resource managers to optimize complex water delivery systems at the scale of entire watersheds. A variety of models have been proposed to evaluate systems in a piecemeal approach that often times operate at different spatial and temporal scales and prove difficult to integrate with associated field data. In the Deadwood River system of Central Idaho, a series of cascading models was utilized to examine potential impacts of reservoir operations on endangered resident bull trout. Results from integrating limnologic, temperature, nutrient, hyporheic, and hydraulic models show that reservoir operations must remain dynamic depending upon the hydrologic conditions (wet vs. dry) present during any given year. Assimilating models that operate at various levels within a watershed will become increasingly important as climate change affects the regional hydrology and water resources operations must adjust to meet current and future demands

    Spectral properties of anomalous X-ray pulsars

    Full text link
    In this paper, the spectra of the persistent emission from anomalous X-ray pulsars (AXPs) and their variation with spin-down rate Ω˙\dot{\Omega} is considered. Firstly, based on an accretion-powered model, the influences of both magnetic field and mass accretion rate on the spectra properties of AXPs are addressed. Subsequently, the relation between the spectral property of AXPs and mass accretion rate M˙\dot{M} is investigated. The result shows that there exists a linear correlation between the photon index and mass accretion rate, and the spectral hardness increases with increasing M˙\dot{M}. A possible emission mechanism for the explanation of spectral properties of AXPs is also discussed.Comment: 11pages, 3 figures, Chin. J. Astron. Astrophys. in pres

    Appraising the value of evidence generation activities : an HIV modelling study

    Get PDF
    Introduction: The generation of robust evidence has been emphasised as a priority for global health. Evidence generation spans a wide range of activities including clinical trials, surveillance programmes and health system performance measurement. As resources for healthcare and research are limited, the desirability of research expenditure should be assessed on the same basis as other healthcare resources, that is, the health gains from research must be expected to exceed the health opportunity costs imposed as funds are diverted to research rather than service provision. Methods: We developed a transmission and costing model to examine the impact of generating additional evidence to reduce uncertainties on the evolution of a generalised HIV epidemic in Zambia. Results: We demonstrate three important points. First, we can quantify the value of additional evidence in terms of the health gain it is expected to generate. Second, we can quantify the health opportunity cost imposed by research expenditure. Third, the value of evidence generation depends on the budgetary policies in place for managing HIV resources under uncertainty. Generating evidence to reduce uncertainty is particularly valuable when decision makers are required to strictly adhere to expenditure plans and when transfers of funds across geographies/programmes are restricted. Conclusion: Better evidence can lead to health improvements in the same way as direct delivery of healthcare. Quantitative appraisals of evidence generation activities are important and should reflect the impact of improved evidence on population health, evidence generation costs and budgetary policies in place
    • 

    corecore