2,609 research outputs found

    EFFECTIVE EXTENSION PROGRAMMING FOR RURAL DEVELOPMENT

    Get PDF
    This paper addresses the possible components of a rural/community development Extension program. Issues such as subject matter selection, research base, and linkages with outside organizations are discussed. The role of rural/community development in an agricultural economics academic setting is analyzed. Recommendations for successful efforts are presented.Community/Rural/Urban Development,

    Direct use of linear time-domain aerodynamics in aeroservoelastic analysis: Aerodynamic model

    Get PDF
    The work presented here is the first part of a continuing effort to expand existing capabilities in aeroelasticity by developing the methodology which is necessary to utilize unsteady time-domain aerodynamics directly in aeroservoelastic design and analysis. The ultimate objective is to define a fully integrated state-space model of an aeroelastic vehicle's aerodynamics, structure and controls which may be used to efficiently determine the vehicle's aeroservoelastic stability. Here, the current status of developing a state-space model for linear or near-linear time-domain indicial aerodynamic forces is presented

    Results of a parametric aeroelastic stability analysis of a generic X-wing aircraft

    Get PDF
    This paper discusses the trends in longitudinal dynamic aeroelastic stability of a generic x-wing aircraft model with design parameter variations. X-wing rotor blade sweep angle, ratio of blade mass to total vehicle mass, blade structural stiffness cross-coupling and vehicle center-of-gravity location were parameters considered. The typical instability encountered is body-freedom flutter involving a low frequency interaction of the first elastic mode and the aircraft short period mode. Parametric cases with the lowest static margin consistently demonstrated the highest flutter dynamic pressures. As mass ratio was increased, the flutter boundary decreased. The decrease was emphasized as center-of-gravity location was moved forward. As sweep angle varied, it was observed that the resulting increase in forward-swept blade bending amplitude relative to aft blade bending amplitude in the first elastic mode had a stabilizing effect on the flutter boundary. Finally, small amounts of stiffness cross-coupling in the aft blades increased flutter dynamic pressure

    Formal deformations, contractions and moduli spaces of Lie algebras

    Full text link
    Jump deformations and contractions of Lie algebras are inverse concepts, but the approaches to their computations are quite different. In this paper, we contrast the two approaches, showing how to compute jump deformations from the miniversal deformation of a Lie algebra, and thus arrive at the contractions. We also compute contractions directly. We use the moduli spaces of real 3-dimensional and complex 3 and 4-dimensional Lie algebras as models for explaining a deformation theory approach to computation of contractions.Comment: 27 page

    Designing and comparing optimized pseudo-continuous Arterial Spin Labeling protocols for measurement of cerebral blood flow

    Get PDF
    Arterial Spin Labeling (ASL) is a non-invasive, non-contrast, perfusion imaging technique which is inherently SNR limited. It is, therefore, important to carefully design scan protocols to ensure accurate measurements. Many pseudo-continuous ASL (PCASL) protocol designs have been proposed for measuring cerebral blood flow (CBF), but it has not yet been demonstrated which design offers the most accurate and repeatable CBF measurements. In this study, a wide range of literature PCASL protocols were first optimized for CBF accuracy and then compared using Monte Carlo simulations and in vivo experiments. The protocols included single-delay, sequential and time-encoded multi-timepoint protocols, and several novel protocol designs, which are hybrids of time-encoded and sequential multi-timepoint protocols. It was found that several multi-timepoint protocols produced more confident, accurate, and repeatable CBF estimates than the single-delay protocol, while also generating maps of arterial transit time. Of the literature protocols, the time-encoded protocol with T1-adjusted label durations gave the most confident and accurate CBF estimates in vivo (16% and 40% better than single-delay), while the sequential multi-timepoint protocol was the most repeatable (20% more repeatable than single-delay). One of the novel hybrid protocols, HybridT1-adj, was found to produce the most confident, accurate and repeatable CBF estimates out of all the protocols tested in both simulations and in vivo (24%, 47%, and 28% more confident, accurate, and repeatable than single-delay in vivo). The HybridT1-adj protocol makes use of the best aspects of both time-encoded and sequential multi-timepoint protocols and should be a useful tool for accurately and efficiently measuring CBF

    Characterizing Strain Accumulation, Residual Stress, and Microstructure of Additive Manufactured Materials

    Get PDF
    Additive Manufacturing (AM) is a rapidly evolving fabrication technology beneficial for its cost-saving potential to produce complex, low-volume shapes. However, AM materials are currently limited to nonstructural applications due to variability in their structural integrity, particularly their fatigue lives. IN718, Ti64, and Al10MgSi specimens manufactured by Direct Metal Laser Sintering (DMLS) were characterized based on variation of post-processing techniques and build direction. To understand the impact of each variable, surface roughness, hardness, residual stresses, microstructure, and strain accumulation in response to Low Cycle Fatigue (LCF) were studied. The use of Electron Backscatter Diffraction (EBSD) provided grain orientation and grain size distributions in each material. This data also provided a grain boundary overlay to be used in conjunction with in-situ Digital Image Correlation (DIC) during LCF to analyze strain distribution with respect to grain characteristics. This work provides experimental background data to be used for computational modeling of the structural integrity of AM materials in order to establish relationships between microstructure and fatigue. The ultimate goal is to understand the influence of material type, post-processing, and build direction variables in AM processes so these materials can be further explored for structural applications

    Political Systems And Economic Development In Sub-Sahara: A Multivariate Time Series Analysis

    Get PDF
    Lipset’s definition (1959) of democracy was used to test the correlation between economic development and the adoption of democracy among countries. Individual country analysis was conducted, followed by regional analysis and a significant positive correlation coefficient of 0.5 was obtained.  This showed that as the level of economic development increases, the level of democracy equally increases in Sub-Sahara Africa.  One limitation of this study is that it is important to note that if this analysis is conducted on an individual country basis, such a causal relationship might not fully exist and, therefore caution should be taken when interpreting these empirical results

    Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK

    Get PDF
    Taphonomic, geological and sampling processes have been cited as biasing richness measurements in the fossil record, and sampling proxies have been widely used to assess this. However, the link between sampling and taxonomic richness is poorly understood, and there has been much debate on the equivalence and relevance of proxies. We approach this question by combining both historical and novel data: a historical fossil occurrence dataset with uniquely high spatial resolution from the Upper Cretaceous Chalk Group of Hampshire, UK, and a newly compiled 3D geological model that maps subsurface extent. The geological model provides rock volumes, and these are compared with exposure and outcrop area, sampling proxies that have often been conflated in previous studies. The extent to which exposure area (true rock availability) has changed over research time is also tested. We find a trend of low Cenomanian to high Turonian to Campanian raw richness, which correlates with, and is possibly driven by, the number of specimens found. After sampling standardization, an unexpected mid-Turonian peak diversity is recovered, and sampling-standardized genus richness is best predicted by rock volume, suggesting a species–area (or ‘genus–area’) effect. Additionally, total exposure area has changed over time, but relative exposure remains the same. Supplementary materials: A locality list, abundance matrix and all correlation and modelling results are available at https://doi.org/10.6084/m9.figshare.c.3592208
    • …
    corecore