33 research outputs found

    Sharks of the order Carcharhiniformes from the British Coniacian, Santonian and Campanian (Upper Cretaceous).

    Get PDF
    Bulk sampling of phosphate-rich horizons within the British Coniacian to Campanian (Upper Cretaceous) yielded very large samples of shark and ray teeth. All of these samples yielded teeth of diverse members of the Carcharhiniformes, which commonly dominate the fauna. The following species are recorded and described: Pseudoscyliorhinus reussi (Herman, 1977) comb. nov., Crassescyliorhinus germanicus (Herman, 1982) gen. nov., Scyliorhinus elongatus (Davis, 1887), Scyliorhinus brumarivulensis sp. nov., ? Palaeoscyllium sp., Prohaploblepharus riegrafi (Müller, 1989) gen. nov., ? Cretascyliorhinus sp., Scyliorhinidae inc. sedis 1, Scyliorhinidae inc. sedis 2, Pteroscyllium hermani sp. nov., Protoscyliorhinus sp., Leptocharias cretaceus sp. nov., Palaeogaleus havreensis Herman, 1977, Paratriakis subserratus sp. nov., Paratriakis tenuis sp. nov., Paratriakis sp. indet. and ? Loxodon sp. Taxa belonging to the families ?Proscylliidae, Leptochariidae, and Carcharhinidae are described from the Cretaceous for the first time. The evolutionary and palaeoecological implications of these newly recognised faunas are discussed

    Parkin–phosphoubiquitin complex reveals cryptic ubiquitin-binding site required for RBR ligase activity

    Get PDF
    RING-between-RING (RBR) E3 ligases are a class of ubiquitin ligases distinct from RING or HECT E3 ligases. An important RBR ligase is Parkin, mutations in which lead to early-onset hereditary Parkinsonism. Parkin and other RBR ligases share a catalytic RBR module but are usually autoinhibited and activated via distinct mechanisms. Recent insights into Parkin regulation predict large, unknown conformational changes during Parkin activation. However, current data on active RBR ligases reflect the absence of regulatory domains. Therefore, it remains unclear how individual RBR ligases are activated, and whether they share a common mechanism. We now report the crystal structure of a human Parkin–phosphoubiquitin complex, which shows that phosphoubiquitin binding induces movement in the 'in-between RING' (IBR) domain to reveal a cryptic ubiquitin-binding site. Mutation of this site negatively affects Parkin's activity. Furthermore, ubiquitin binding promotes cooperation between Parkin molecules, which suggests a role for interdomain association in the RBR ligase mechanism
    corecore