48 research outputs found

    Inducible DNA breaks in Ig S regions are dependent on AID and UNG

    Get PDF
    Class switch recombination (CSR) occurs by an intrachromosomal deletion whereby the IgM constant region gene (Cμ) is replaced by a downstream constant region gene. This unique recombination event involves formation of double-strand breaks (DSBs) in immunoglobulin switch (S) regions, and requires activation-induced cytidine deaminase (AID), which converts cytosines to uracils. Repair of the uracils is proposed to lead to DNA breaks required for recombination. Uracil DNA glycosylase (UNG) is required for most CSR activity although its role is disputed. Here we use ligation-mediated PCR to detect DSBs in S regions in splenic B cells undergoing CSR. We find that the kinetics of DSB induction corresponds with AID expression, and that DSBs are AID- and UNG-dependent and occur preferentially at G:C basepairs in WRC/GYW AID hotspots. Our results indicate that AID attacks cytosines on both DNA strands, and staggered breaks are processed to blunt DSBs at the initiating ss break sites. We propose a model to explain the types of end-processing events observed

    Murine immune responses to virus-like particle-associated pre- and postfusion forms of the respiratory syncytial virus F protein

    Get PDF
    Virus-like particles (VLPs) built on the Newcastle disease virus (NDV) core proteins, NP and M, and containing two chimeric proteins, F/F and H/G, composed of respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective RSV neutralizing antibodies in mice. Here, we report the properties of VLPs constructed to contain mutant RSV F protein ectodomains stabilized in prefusion (pre-F/F) or postfusion (post-F/F) configurations. The structures of the chimeric proteins assembled into VLPs were verified immunologically by their reactivities with a conformationally restricted anti-F protein monoclonal antibody. Following immunization of mice, without adjuvant, pre-F/F-containing VLPs induced significantly higher neutralizing antibody titers than the post-F/F-containing VLPs or the wild-type F/F-containing VLPs after a single immunization but not after prime and boost immunization. The specificities of anti-F IgG induced by the two mutant VLPs were assessed by enzyme-linked immunosorbent assay (ELISA) using soluble forms of the prefusion and postfusion forms of the F protein as targets. While both types of VLPs stimulated similar levels of IgG specific for the soluble postfusion F protein, titers of IgG specific for prefusion F induced by the pre-F/F-containing VLPs were higher than those induced by post-F/F-containing VLPs. Thus, VLPs containing a stabilized prefusion form of the RSV F protein represent a promising RSV vaccine candidate. IMPORTANCE: The development of vaccines for respiratory syncytial virus has been hampered by a lack of understanding of the requirements for eliciting high titers of neutralizing antibodies. The results of this study suggest that particle-associated RSV F protein containing mutations that stabilize the structure in a prefusion conformation may stimulate higher titers of protective antibodies than particles containing F protein in a wild-type or postfusion conformation. These findings indicate that the prefusion F protein assembled into VLPs has the potential to produce a successful RSV vaccine candidate

    Development of a 2,4-diaminothiazole series for the treatment of human African trypanosomiasis highlights the importance of static-cidal screening of analogues

    Get PDF
    While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues

    Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets

    Get PDF
    Transfer functions are widely used in palaeoecology to infer past environmental conditions from fossil remains of many groups of organisms. In contrast to traditional training-set design with one observation per site, some training-sets, including those for peatland testate amoeba-hydrology transfer functions, have a clustered structure with many observations from each site. Here we show that this clustered design causes standard performance statistics to be overly optimistic. Model performance when applied to independent data sets is considerably weaker than suggested by statistical cross-validation. We discuss the reasons for these problems and describe leave-one-site-out cross-validation and the cluster bootstrap as appropriate methods for clustered training-sets. Using these methods we show that the performance of most testate amoeba-hydrology transfer functions is worse than previously assumed and reconstructions are more uncertain

    Homeostatic proliferation of B cells

    No full text
    Naive B cells introduced into a lymphopenic host undergo antigen-independent proliferation which is inhibited in a cell dose dependent manner by feedback from mature B cells. Homeostatic proliferation is a generalized lymphocyte property with B cells sharing many of the inductive and regulatory characteristics established for naive and memory CD4+ and CD8+ T cells and NK cells. In this communication we discuss the cytokine requirements for B cell HP, extend the murine studies to human cells, and propose the hypothesis that B cell HP may provide an antigen-independent mechanism for maintaining B cell memory

    Progression of a vesicular stomatitis virus infection in primary lymphocytes is restricted at multiple levels during B cell activation

    No full text
    Small resting B cells do not support a productive vesicular stomatitis virus (VSV) infection, but are induced by B cell activators to become fully permissive for VSV replication. Nonpermissive B cell populations restrict VSV expression at multiple points: transcript levels, translation, and maturation. Unstimulated resting G0 B cells can be infected by VSV and support the synthesis of all VSV mRNAs. Steady-state levels of viral transcripts are selectively enhanced by T cell-derived cytokines to an extent comparable with that seen for cytokine-regulated cellular mRNAs. However, viral proteins are not detected in immunoprecipitates from unstimulated or cytokine-stimulated B cells despite the fact that viral mRNAs are associated with polysomes and can be translated in vitro. This translational block is released by stimulation of infected B cells with mitogenic anti-lg or LPS, or non-mitogenic PMA. VSV virion maturation is also regulated by activation signals, because neither anti-lg nor PMA-stimulated B cells produce high levels of infectious VSV particles. Because anti-lg stimulation supports viral genome replication, maturational arrest is apparently at virus assembly or release. PMA and ionomycin induces changes beyond those seen with anti-lg, because these B cells produce PFUs at levels comparable with those seen with LPS-activated B cells and VSV-permissive cell lines. Activation-dependent regulation of virus expression provides a new paradigm for assessing activator-induced events in B cell differentiation not revealed by previous assessments of proliferation of Ab synthesis

    BLyS and B cell homeostasis

    No full text
    Naive peripheral B cells survive in vivo because of active stimulation by the TNF superfamily ligand B lymphocyte stimulator (BLyS/BAFF). Although the survival promoting properties of BLyS are well known, the signal pathways and molecular effectors that characterize this stimulation are still being elucidated. In this communication, we discuss the signal cascades that effect BLyS dependent survival and the regulation of BLyS induced signaling. We also examine the role of BLyS as a growth factor and propose that BLyS induced metabolic enhancement optimizes the B cell response to BCR and TLR-dependent signaling

    Expression of a human coxsackie/adenovirus receptor transgene permits adenovirus infection of primary lymphocytes

    No full text
    Replication-defective adenoviruses are effective vehicles for gene transfer, both for the repair of defective genes and for studies of gene function in primary cells. Many cell types, including lymphocytes, are refractory to adenovirus infection because they lack the Coxsackie/adenovirus receptor (CAR) needed for virus attachment. To extend the advantages of adenovirus-mediated gene transfer to primary lymphoid populations and other cell types lacking endogenous CAR, we produced a mouse that expresses human (h) CAR as a transgene under control of a murine MHC class I promoter. hCAR protein is expressed on T and B lymphocytes from a variety of organs (spleen, lymph node, bone marrow, thymus, and peritoneum). These lymphocytes are susceptible to adenovirus infection, as demonstrated by reporter green fluorescent protein gene expression, with the fraction of expressing cells as high as 70%. Some lymphocyte subpopulations required stimulation subsequent to adenovirus infection for reporter expression. This activation requirement is a restriction imposed by the promoter used in the adenovirus construct. In subpopulations requiring activation, the elongation factor 1 promoter was far superior to a hCMV promoter for directing green fluorescent protein production. We also find that hCAR mRNA is produced in nonlymphoid tissues from all founder lines, including tissues that do not express endogenous murine CAR, suggesting the opportunity for effecting gene delivery to and testing gene function in a wide variety of primary cell types previously resistant to gene transfer

    Naive B lymphocytes undergo homeostatic proliferation in response to B cell deficit

    No full text
    Naive peripheral B cells are maintained in sufficient numbers and diversity to mount effective immune responses against infectious agents. However, the size and repertoire of this B cell pool is constantly diminished by normal cell turnover and Ag activation. Homeostatic (Ag-independent) proliferation in response to B cell depletion is one mechanism to compensate for this cell loss. We have used purified CFSE-labeled B cells and an adoptive transfer model system to show that immature and mature B cells divide in a variety of B cell-deficient (scid, xid, IL-7(-/-), and sublethally irradiated) hosts. Homeostatic B cell proliferation is T cell independent, and B cells that have replicated by this mechanism retain the antigenic phenotype of naive B cells. Replication is significantly reduced in B cell-sufficient normal or B cell-reconstituted immunodeficient recipients by the action of competing mature follicular B cells. Using xid mice and transcription factor knockouts, we show that the activation signal(s) that lead to homeostatic B cell proliferation require Bruton\u27s tyrosine kinase; however, c-Rel, a Bruton\u27s tyrosine kinase-induced NF-kappaB/Rel transcription factor critical for Ag and mitogen stimulation, is dispensable, indicating the uniqueness of this activation pathway. Survival and replication signals can also be separated, because the transcription factor p50 (NF-kappaB1), which is required for the survival of peripheral B cells, is not necessary for homeostatic replication. Homeostatic B cell proliferation provides an Ag-independent mechanism for the maintenance and expansion of naive B cells selected into the mature B cell pool
    corecore