1,189 research outputs found
Geometric Prequantization of the Moduli Space of the Vortex equations on a Riemann surface
The moduli space of solutions to the vortex equations on a Riemann surface
are well known to have a symplectic (in fact K\"{a}hler) structure. We show
this symplectic structure explictly and proceed to show a family of symplectic
(in fact, K\"{a}hler) structures on the moduli space,
parametrised by , a section of a line bundle on the Riemann surface.
Next we show that corresponding to these there is a family of prequantum line
bundles on the moduli space whose curvature is
proportional to the symplectic forms .Comment: 8 page
Effective Equations of Motion for Quantum Systems
In many situations, one can approximate the behavior of a quantum system,
i.e. a wave function subject to a partial differential equation, by effective
classical equations which are ordinary differential equations. A general method
and geometrical picture is developed and shown to agree with effective action
results, commonly derived through path integration, for perturbations around a
harmonic oscillator ground state. The same methods are used to describe
dynamical coherent states, which in turn provide means to compute quantum
corrections to the symplectic structure of an effective system.Comment: 31 pages; v2: a new example, new reference
Quantum-Mechanical Dualities on the Torus
On classical phase spaces admitting just one complex-differentiable
structure, there is no indeterminacy in the choice of the creation operators
that create quanta out of a given vacuum. In these cases the notion of a
quantum is universal, i.e., independent of the observer on classical phase
space. Such is the case in all standard applications of quantum mechanics.
However, recent developments suggest that the notion of a quantum may not be
universal. Transformations between observers that do not agree on the notion of
an elementary quantum are called dualities. Classical phase spaces admitting
more than one complex-differentiable structure thus provide a natural framework
to study dualities in quantum mechanics. As an example we quantise a classical
mechanics whose phase space is a torus and prove explicitly that it exhibits
dualities.Comment: New examples added, some precisions mad
Symplectic Cuts and Projection Quantization
The recently proposed projection quantization, which is a method to quantize
particular subspaces of systems with known quantum theory, is shown to yield a
genuine quantization in several cases. This may be inferred from exact results
established within symplectic cutting.Comment: 12 pages, v2: additional examples and a new reference to related wor
Extended diffeomorphism algebras in (quantum) gravitational physics
We construct an explicit representation of the algebra of local
diffeomorphisms of a manifold with realistic dimensions. This is achieved in
the setting of a general approach to the (quantum) dynamics of a physical
system which is characterized by the fundamental role assigned to a basic
underlying symmetry. The developed mathematical formalism makes contact with
the relevant gravitational notions by means of the addition of some extra
structure. The specific manners in which this is accomplished, together with
their corresponding physical interpretation, lead to different gravitational
models. Distinct strategies are in fact briefly outlined, showing the
versatility of the present conceptual framework.Comment: 20 pages, LATEX, no figure
Abelian BF theory and Turaev-Viro invariant
The U(1) BF Quantum Field Theory is revisited in the light of
Deligne-Beilinson Cohomology. We show how the U(1) Chern-Simons partition
function is related to the BF one and how the latter on its turn coincides with
an abelian Turaev-Viro invariant. Significant differences compared to the
non-abelian case are highlighted.Comment: 47 pages and 6 figure
Spinor Representation for Loop Quantum Gravity
We perform a quantization of the loop gravity phase space purely in terms of
spinorial variables, which have recently been shown to provide a direct link
between spin network states and simplicial geometries. The natural Hilbert
space to represent these spinors is the Bargmann space of holomorphic
square-integrable functions over complex numbers. We show the unitary
equivalence between the resulting generalized Bargmann space and the standard
loop quantum gravity Hilbert space by explicitly constructing the unitary map.
The latter maps SU(2)-holonomies, when written as a function of spinors, to
their holomorphic part. We analyze the properties of this map in detail. We
show that the subspace of gauge invariant states can be characterized
particularly easy in this representation of loop gravity. Furthermore, this map
provides a tool to efficiently calculate physical quantities since integrals
over the group are exchanged for straightforward integrals over the complex
plane.Comment: 36 pages, minor corrections and improvements, matches published
versio
Conformal Spinning Quantum Particles in Complex Minkowski Space as Constrained Nonlinear Sigma Models in U(2,2) and Born's Reciprocity
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a
base for the construction of conformally invariant quantum (field) theory,
either as phase or configuration spaces. We follow a gauge-invariant Lagrangian
approach (of nonlinear sigma-model type) and use a generalized Dirac method for
the quantization of constrained systems, which resembles in some aspects the
standard approach to quantizing coadjoint orbits of a group G. Physical wave
functions, Haar measures, orthonormal basis and reproducing (Bergman) kernels
are explicitly calculated in and holomorphic picture in these Cartan domains
for both scalar and spinning quantum particles. Similarities and differences
with other results in the literature are also discussed and an extension of
Schwinger's Master Theorem is commented in connection with closure relations.
An adaptation of the Born's Reciprocity Principle (BRP) to the conformal
relativity, the replacement of space-time by the 8-dimensional conformal domain
at short distances and the existence of a maximal acceleration are also put
forward.Comment: 33 pages, no figures, LaTe
Twisted geometries: A geometric parametrisation of SU(2) phase space
A cornerstone of the loop quantum gravity program is the fact that the phase
space of general relativity on a fixed graph can be described by a product of
SU(2) cotangent bundles per edge. In this paper we show how to parametrize this
phase space in terms of quantities describing the intrinsic and extrinsic
geometry of the triangulation dual to the graph. These are defined by the
assignment to each triangle of its area, the two unit normals as seen from the
two polyhedra sharing it, and an additional angle related to the extrinsic
curvature. These quantities do not define a Regge geometry, since they include
extrinsic data, but a looser notion of discrete geometry which is twisted in
the sense that it is locally well-defined, but the local patches lack a
consistent gluing among each other. We give the Poisson brackets among the new
variables, and exhibit a symplectomorphism which maps them into the Poisson
brackets of loop gravity. The new parametrization has the advantage of a simple
description of the gauge-invariant reduced phase space, which is given by a
product of phase spaces associated to edges and vertices, and it also provides
an abelianisation of the SU(2) connection. The results are relevant for the
construction of coherent states, and as a byproduct, contribute to clarify the
connection between loop gravity and its subset corresponding to Regge
geometries.Comment: 28 pages. v2 and v3 minor change
The Computational Power of Minkowski Spacetime
The Lorentzian length of a timelike curve connecting both endpoints of a
classical computation is a function of the path taken through Minkowski
spacetime. The associated runtime difference is due to time-dilation: the
phenomenon whereby an observer finds that another's physically identical ideal
clock has ticked at a different rate than their own clock. Using ideas
appearing in the framework of computational complexity theory, time-dilation is
quantified as an algorithmic resource by relating relativistic energy to an
th order polynomial time reduction at the completion of an observer's
journey. These results enable a comparison between the optimal quadratic
\emph{Grover speedup} from quantum computing and an speedup using
classical computers and relativistic effects. The goal is not to propose a
practical model of computation, but to probe the ultimate limits physics places
on computation.Comment: 6 pages, LaTeX, feedback welcom
- …