42 research outputs found

    Identifying key controls on storm formation over the Lake Victoria Basin

    Get PDF
    The Lake Victoria region in East Africa is a hotspot for intense convective storms that are responsible for the deaths of thousands of fisherman each year. The processes responsible for the initiation, development and propagation of the storms are poorly understood and forecast skill is limited. Key processes for the lifecycle of two storms are investigated using Met Office Unified Model convection-permitting simulations with 1.5 km horizontal gridspacing. The two cases are analysed alongside a simulation of a period with no storms to assess the roles of the lakeā€“land breeze, downslope mountain winds, prevailing large-scale winds and moisture availability. Whilst seasonal changes in large-scale moisture availability play a key role in storm development, the lakeā€“land breeze circulation is a major control on the initiation location, timing and propagation of convection. In the dry season, opposing offshore winds form a bulge of moist air above the lake surface overnight that extends from the surface to ~1.5 km and may trigger storms in high CAPE/low CIN environments. Such a feature has not been explicitly observed or modelled in previous literature. Storms over land on the preceding day are shown to alter the local atmospheric moisture and circulation to promote storm formation over the lake. The variety of initiation processes and differing characteristics of just two storms analysed here show that the mean diurnal cycle over Lake Victoria alone is inadequate to fully understand storm formation. Knowledge of daily changes in local-scale moisture variability and circulations are key for skilful forecasts over the lake

    The effect of westerlies on East African rainfall and the associated role of tropical cyclones and the Maddenā€“Julian Oscillation

    No full text
    Variability of rainfall in East Africa has major impacts on lives and livelihoods. From floods to droughts, this variability is important on short daily timeā€scales to longer decadal timeā€scales, as is apparent from the devastating effects of droughts in East Africa over recent decades. Past studies have highlighted the Congo airmass in enhancing East African rainfall. Our detailed analysis of the feature shows that days with a westerly moisture flow, bringing the Congo airmass, enhance rainfall by up to 100% above the daily mean, depending on the time of year. Conversely, there is a suppression of rainfall on days with a strong easterly flow. Days with a westerly moisture flux are in a minority in all seasons but we show that long rains with more westerly days are wetter, and that during the mostā€recent decade which has had more frequent droughts (associated with the ā€œEastern African climate paradoxā€), there has been few days with such westerlies. We also investigate the influence of the Maddenā€“Julian Oscillation (MJO) and tropical cyclones, and their interaction with the westerly flow. We show that days of westerly moisture flux are more likely during phases 3 and 4 of the MJO and when there are one or more tropical cyclones present. In addition, tropical cyclones are more likely to form during these phases of the MJO, and more likely to be coincident with westerlies when forming to the east of Madagascar. Overall, our analysis brings together many different processes that have been discussed in the literature but not yet considered in complete combination. The results demonstrate the importance of the Congo airmass on daily to climate timeā€scales, and in doing so offers useful angles of investigation for future studies into prediction of East African rainfall

    Genome-Wide Transcriptional Response of Silurana (Xenopus) tropicalis to Infection with the Deadly Chytrid Fungus

    Get PDF
    Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd) infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus) tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen) following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing efforts to understand differences in response to Bd between susceptible and resistant frog species and the effects of chytridiomycosis in natural populations

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14Ā·2 per cent (646 of 4544) and the 30-day mortality rate was 1Ā·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7Ā·61, 95 per cent c.i. 4Ā·49 to 12Ā·90; P < 0Ā·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0Ā·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Russtoxin: A new family of two-component phospholipase A 2 toxins from Russellā€™s vipers

    No full text

    What is the added-value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa?

    No full text
    Forecasting convective rainfall in the tropics is a major challenge for numerical weather prediction. The use of convection-permitting (CP) forecast models in the tropics has lagged behind the mid-latitudes, despite the great potential of such models in this region. In the scientific literature, there is very little evaluation of CP models in the tropics, especially over an extended time period. This paper evaluates the prediction of convective storms for a period of two years in the Met Office operational CP model over East Africa and the global operational forecast model. A novel localised form of the Fractions Skill Score is introduced, which shows variation in model skill across the spatial domain. Overall, the CP model and the global model both outperform a 24-hour persistence forecast. The CP model shows greater skill than the global model, in particular on sub-daily timescales and for storms over land. Forecasts over Lake Victoria are also improved in the CP model, with an increase in hit rate of up to 20%. Contrary to studies in the mid-latitudes, the skill of both models shows a large dependence on the time of day and comparatively little dependence on the forecast lead time within a 48-hour forecast. Although these results provide more motivation for forecasters to use the CP model to produce sub-daily forecasts with increased detail, there is a clear need for more in-situ observations for data assimilation into the models and for verification. A move towards ensemble forecasting could have further benefits

    Aircraft observations of the lakeā€land breeze circulation over Lake Victoria

    No full text
    The lakeā€“land breeze circulation over Lake Victoria was observed in unprecedented detail with a research aircraft during the HyVic pilot flight campaign in January 2019. An evening and morning flight observed the lake and land breezes respectively under mostly dry conditions. The circulation was observed at various heights along a transect across the lake and onshore in Tanzania. Profiles of the lower troposphere were recorded by dropsondes over the lake and land. Convection-permitting MetUM simulations with different horizontal grid-spacings (including sub-km) were run for the flight periods. During the evening flight, the aircraft crossed the lake breeze front over land at 1627 LT, approximately 50 km to the east of the lake shore, recording a 6 g kgā€“1 decrease in specific humidity and reversal in wind direction over ~5 km. During the morning flight, a shallow land breeze was observed across the eastern shore at 0545 LT. At least one region of increased and deeper moisture (previously seen in simulations but never observed) was sampled over the lake surface between 0527ā€“0855 LT. This bulge of moisture was likely formed from the lifting of near-surface moist air above the lake by low-level convergence. The observations and model simulations suggest that low-level convergence occurred at the leading edge of the land breeze, which had detached from the main land breeze and independently propagated westward across the lake with wave-like characteristics. The MetUM simulations were able to reasonably reproduce the lake breeze front, bulge feature, and its propagation, which is a major achievement given the sparse observational data for model initialisation in this region. However, some timing, resolution and boundary layer depth biases require further investigation. Overall, this pilot campaign provided an unprecedented snapshot of the Lake Victoria lakeā€“land breeze circulation and motivates a more comprehensive field campaign in the future
    corecore