175 research outputs found

    PI3K mediated activation of GSK‑3β reduces at‑level primary afferent growth responses associated with excitotoxic spinal cord injury dysesthesias

    Get PDF
    Background Neuropathic pain and sensory abnormalities are a debilitating secondary consequence of spinal cord injury (SCI). Maladaptive structural plasticity is gaining recognition for its role in contributing to the development of post SCI pain syndromes. We previously demonstrated that excitotoxic induced SCI dysesthesias are associated with enhanced dorsal root ganglia (DRG) neuronal outgrowth. Although glycogen synthase kinase-3β (GSK-3β) is a known intracellular regulator neuronal growth, the potential contribution to primary afferent growth responses following SCI are undefined. We hypothesized that SCI triggers inhibition of GSK-3β signaling resulting in enhanced DRG growth responses, and that PI3K mediated activation of GSK-3β can prevent this growth and the development of at-level pain syndromes. Results Excitotoxic SCI using intraspinal quisqualic acid (QUIS) resulted in inhibition of GSK-3β in the superficial spinal cord dorsal horn and adjacent DRG. Double immunofluorescent staining showed that GSK-3βP was expressed in DRG neurons, especially small nociceptive, CGRP and IB4-positive neurons. Intrathecal administration of a potent PI3-kinase inhibitor (LY294002), a known GSK-3β activator, significantly decreased GSK-3βP expression levels in the dorsal horn. QUIS injection resulted in early (3 days) and sustained (14 days) DRG neurite outgrowth of small and subsequently large fibers that was reduced with short term (3 days) administration of LY294002. Furthermore, LY294002 treatment initiated on the date of injury, prevented the development of overgrooming, a spontaneous at-level pain related dysesthesia. Conclusions QUIS induced SCI resulted in inhibition of GSK-3β in primary afferents and enhanced at-level DRG intrinsic growth (neurite elongation and initiation). Early PI3K mediated activation of GSK-3β attenuated QUIS-induced DRG neurite outgrowth and prevented the development of at-level dysesthesias.ECU Open Access Publishing Support Fun

    Glycogen Synthase Kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells

    Get PDF
    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation

    Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress

    Get PDF
    Cancer cells are metabolically stressed during tumour progression due to limited tumour vascularity and resultant nutrient, growth factor and oxygen deficiency that can induce cell death and inhibit tumour growth. We demonstrate that Rab25, a small GTPase involved in endosomal recycling, that is genomically amplified in multiple tumour lineages, is a key regulator of cellular bioenergetics and autophagy. RAB25 enhanced survival during nutrient stress by preventing apoptosis and autophagy via binding and activating AKT leading to increased glucose uptake and improved cellular bioenergetics. Unexpectedly, Rab25 induced the accumulation of glycogen in epithelial cancer cells, a process not previously identified. Strikingly, an increase in basal ATP levels combined with AKT-dependent increases in glucose uptake and glycogen storage allowed maintenance of ATP levels during bioenergetic stress. The clinical relevance of these findings was validated by the ability of a Rab25-dependent expression profile enriched for bioenergetics targets to identify patients with a poor prognosis. Thus, Rab25 is an unexpected regulator of cellular bioenergetics implicated as a useful biomarker and potential therapeutic target

    Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Akt/PKB family of kinases is frequently activated in human cancers, including oral squamous cell carcinoma (OSCC). Akt-induced epithelial-to-mesenchymal transition (EMT) involves downregulation of E-cadherin, which appears to result from upregulation of the transcription repressor Snail. Recently, it was proposed that carcinoma cells, especially in metastatic sites, could acquire the mesenchymal-to-epithelial reverting transition (MErT) in order to adapt the microenvironments and re-expression of E-cadherin be a critical indicator of MErT. However, the precise mechanism and biologic or clinical importance of the MErT in cancers have been little known. This study aimed to investigate whether Akt inhibition would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in OSCC cells with low or negative expression of E-cadherin. We also investigate whether inhibition of Akt activity would affect the E-cadherin repressors and signaling molecules like NF-κB, ERK, and p38.</p> <p>Methods</p> <p>We screened several OSCC cell lines in order to select suitable cell line models for inducing MErT, using immunoblotting and methylation specific-PCR. We examined whether Akt inhibitor phosphatidylinositol ether lipid analogues (PIA) treatment would restore the expression of E-cadherin and β-catenin, reduce that of Vimentin, and induce the MErT in KB and KOSCC-25B cells using RT-PCR, immunoblotting, immunofluorescence analysis, and <it>in vitro </it>migration assay. We also investigated whether inhibition of Akt activity would affect the E-cadherin repressors, including Snail, Twist, and SIP-1/ZEB-2 and signaling molecules like NF-κB, ERK, JNK, and p38 using RT-PCR, immunoblotting, and immunofluorescence analysis.</p> <p>Results</p> <p>Of the 7 OSCC cell lines, KB and KOSCC-25B showed constitutively activated phosphorylated Akt and low or negative expression of E-cadherin. Inhibition of Akt activity by PIA decreased NF-κB signaling, but did not affect phosphorylation of ERK, JNK, and p38 in KB and KOSCC-25B cells. Akt inhibition led to downregulation of Snail and Twist expression. In contrast, inhibition of Akt activity by PIA did not induce any changes in SIP-1/ZEB-2 expression. PIA treatment induced the expression of E-cadherin and β-catenin, reduce that of Vimentin, restored their epithelial morphology of a polygonal shape, and reduced tumor cell migration in KB and KOSCC-25B cells, which was the corresponding feature of MErT.</p> <p>Conclusion</p> <p>All of these findings suggest that Akt inhibition could induce the MErT through decreased NF-κB signaling and downregulation of Snail and Twist in OSCC cells. A strategy involving Akt inhibition might be a useful therapeutic tool in controlling cancer dissemination and metastasis in oral cancer patients.</p

    Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases

    Get PDF
    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response

    Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts

    Get PDF
    The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents

    Dynamin I phosphorylation by GSK3 controls activity-dependent bulk endocytosis of synaptic vesicles.

    Get PDF
    Glycogen synthase kinase 3 (GSK3) is a critical enzyme in neuronal physiology; however, it is not yet known whether it has any specific role in presynaptic function. We found that GSK3 phosphorylates a residue on the large GTPase dynamin I (Ser-774) both in vitro and in primary rat neuronal cultures. This was dependent on prior phosphorylation of Ser-778 by cyclin-dependent kinase 5. Using both acute inhibition with pharmacological antagonists and silencing of expression with short hairpin RNA, we found that GSK3 was specifically required for activity-dependent bulk endocytosis (ADBE) but not clathrin-mediated endocytosis. Moreover we found that the specific phosphorylation of Ser-774 on dynamin I by GSK3 was both necessary and sufficient for ADBE. These results demonstrate a presynaptic role for GSK3 and they indicate that a protein kinase signaling cascade prepares synaptic vesicles for retrieval during elevated neuronal activity

    Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling

    Get PDF
    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27Kip1 expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr308 and Ser473 in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer

    Differential modulatory effects of GSK-3β and HDM2 on sorafenib-induced AIF nuclear translocation (programmed necrosis) in melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GSK-3β phosphorylates numerous substrates that govern cell survival. It phosphorylates p53, for example, and induces its nuclear export, HDM2-dependent ubiquitination, and proteasomal degradation. GSK-3β can either enhance or inhibit programmed cell death, depending on the nature of the pro-apoptotic stimulus. We previously showed that the multikinase inhibitor sorafenib activated GSK-3β and that this activation attenuated the cytotoxic effects of the drug in various BRAF-mutant melanoma cell lines. In this report, we describe the results of studies exploring the effects of GSK-3β on the cytotoxicity and antitumor activity of sorafenib combined with the HDM2 antagonist MI-319.</p> <p>Results</p> <p>MI-319 alone increased p53 levels and p53-dependent gene expression in melanoma cells but did not induce programmed cell death. Its cytotoxicity, however, was augmented in some melanoma cell lines by the addition of sorafenib. In responsive cell lines, the MI-319/sorafenib combination induced the disappearance of p53 from the nucleus, the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the translocation of p53 to the mitochondria and that of AIF to the nuclei. These events were all GSK-3β-dependent in that they were blocked with a GSK-3β shRNA and facilitated in otherwise unresponsive melanoma cell lines by the introduction of a constitutively active form of the kinase (GSK-3β-S9A). These modulatory effects of GSK-3β on the activities of the sorafenib/MI-319 combination were the exact reverse of its effects on the activities of sorafenib alone, which induced the down modulation of Bcl-2 and Bcl-x<sub>L </sub>and the nuclear translocation of AIF only in cells in which GSK-3β activity was either down modulated or constitutively low. In A375 xenografts, the antitumor effects of sorafenib and MI-319 were additive and associated with the down modulation of Bcl-2 and Bcl-x<sub>L</sub>, the nuclear translocation of AIF, and increased suppression of tumor angiogenesis.</p> <p>Conclusions</p> <p>Our data demonstrate a complex partnership between GSK-3β and HDM2 in the regulation of p53 function in the nucleus and mitochondria. The data suggest that the ability of sorafenib to activate GSK-3β and alter the intracellular distribution of p53 may be exploitable as an adjunct to agents that prevent the HDM2-dependent degradation of p53 in the treatment of melanoma.</p
    corecore