159 research outputs found

    Macrophage-derived upd3 Cytokine causes impaired glucose homeostasis and reduced lifespan in drosophila fed a lipid-rich diet

    Get PDF
    Long-term consumption of fatty foods is associated with obesity, macrophage activation and inflammation, metabolic imbalance, and a reduced lifespan. We took advantage of Drosophila genetics to investigate the role of macrophages and the pathway(s) that govern their response to dietary stress. Flies fed a lipid-rich diet presented with increased fat storage, systemic activation of JAK-STAT signaling, reduced insulin sensitivity, hyperglycemia, and a shorter lifespan. Drosophila macrophages produced the JAK-STAT-activating cytokine upd3, in a scavenger-receptor (crq) and JNK-dependent manner. Genetic depletion of macrophages or macrophage-specific silencing of upd3 decreased JAK-STAT activation and rescued insulin sensitivity and the lifespan of Drosophila, but did not decrease fat storage. NF-κB signaling made no contribution to the phenotype observed. These results identify an evolutionarily conserved “scavenger receptor-JNK-type 1 cytokine” cassette in macrophages, which controls glucose metabolism and reduces lifespan in Drosophila maintained on a lipid-rich diet via activation of the JAK-STAT pathway

    DNA methylation in the promoter region of the p16 (CDKN2/MTS-1/INK4A) gene in human breast tumours

    Get PDF
    The p16 (CDKN2/MTS-1/INK4A) gene is one of several tumour-suppressor genes that have been shown to be inactivated by DNA methylation in various human cancers including breast tumours. We have used bisulphite genomic sequencing to examine the detailed sequence specificity of DNA methylation in the CpG island promoter/exon 1 region in the p16 gene in DNA from a series of human breast cancer specimens and normal human breast tissue (from reductive mammaplasty). The p16 region examined was unmethylated in the four normal human breast specimens and in four out of nine breast tumours. In the other five independent breast tumour specimens, a uniform pattern of DNA methylation was observed. Of the nine major sites of DNA methylation in the amplified region from these tumour DNAs, four were in non-CG sequences. This unusual concentration of non-CG methylation sites was not a general phenomenon present throughout the genome of these tumour cells because the methylated CpG island regions of interspersed L1 repeats had a pattern of (almost exclusively) CG methylation similar to that found in normal breast tissue DNA and in DNA from tumours with unmethylated p16 genes. These data suggest that DNA methylation of the p16 gene in some breast tumours could be the result of an active process that generates a discrete methylation pattern and, hence, could ultimately be amenable to theraputic manipulation. © 1999 Cancer Research Campaig

    Early changes in Orthopteran assemblages after grassland restoration : a comparison of space-for-time substitution versus repeated-measures monitoring

    Get PDF
    Grasslands harbour significant biodiversity and their restoration is a common intervention in biodiversity conservation. However, we know very little on how grassland restoration influences arthropod groups. Here we compared orthopteran assemblages in croplands, natural grasslands and one to four-year-old grasslands restored in a large-scale restoration on former croplands in Hortobágy National Park (E-Hungary). Sampling was done by standardized sweep-netting both in a repeated measures design and space-for-time substitution (chronosequence) design. General linear models with repeated measures from five years showed that species richness, abundance and Shannon diversity of orthopterans decreased in the year following restoration but increased afterwards. By the fourth year, species richness almost doubled and abundance increased almost ten-fold in restored grasslands compared to croplands. Multivariate analyses showed that species composition in the first two years did not progress much but by the third and fourth year there was partial overlap with natural grasslands. Local restoration conditions (last crop, seed mixture) and landscape configuration (proportion of natural grasslands < 1 km away) did not influence the above patterns in either the repeated measures or the chronosequence design, whereas time since restoration affected almost all community variables. Our results suggest that generalist ubiquitous species appeared in restored grasslands first and the more sensitive species colonized the restored fields gradually in later years. The qualitative and quantitative properties of the orthopteran assemblages in restored fields did not yet reach those of natural grasslands, therefore, our study suggests that the full regeneration of the orthopteran assemblages takes more than four years

    A structurally distinct TGF-β mimic from an intestinal helminth parasite potently induces regulatory T cells

    Get PDF
    Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-β signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-β mimic (Hp-TGM) that replicates the biological and functional properties of TGF-β, including binding to mammalian TGF-β receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-β or other members of the TGF-β family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host

    Complex Feeding Tracks of the Sessile Herbivorous Insect Ophiomyia maura as a Function of the Defense against Insect Parasitoids

    Get PDF
    Because insect herbivores generally suffer from high mortality due to their natural enemies, reducing the risk of being located by natural enemies is of critical importance for them, forcing them to develop a variety of defensive measures. Larvae of leaf-mining insects lead a sedentary life inside a leaf and make conspicuous feeding tracks called mines, exposing themselves to the potential risk of parasitism. We investigated the defense strategy of the linear leafminer Ophiomyia maura Meigen (Diptera: Agromyzidae), by focusing on its mining patterns. We examined whether the leafminer could reduce the risk of being parasitized (1) by making cross structures in the inner area of a leaf to deter parasitoids from tracking the mines due to complex pathways, and (2) by mining along the edge of a leaf to hinder visually searching parasitoids from finding mined leaves due to effective background matching of the mined leaves among intact leaves. We quantified fractal dimension as mine complexity and area of mine in the inner area of the leaf as interior mine density for each sample mine, and analyzed whether these mine traits affected the susceptibility of O. maura to parasitism. Our results have shown that an increase in mine complexity with the development of occupying larvae decreases the probability of being parasitized, while interior mine density has no influence on parasitism. These results suggest that the larval development increases the host defense ability through increasing mine complexity. Thus the feeding pattern of these sessile insects has a defensive function by reducing the risk of parasitism

    Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension

    Get PDF
    Background: Previous literature suggests that those with reading disability (RD) have more pronounced deficits during semantic processing in reading as compared to listening comprehension. This discrepancy has been supported by recent neuroimaging studies showing abnormal activity in RD during semantic processing in the visual but not in the auditory modality. Whether effective connectivity between brain regions in RD could also show this pattern of discrepancy has not been investigated. Methodology/Principal Findings: Children (8- to 14-year-olds) were given a semantic task in the visual and auditory modality that required an association judgment as to whether two sequentially presented words were associated. Effective connectivity was investigated using Dynamic Causal Modeling (DCM) on functional magnetic resonance imaging (fMRI) data. Bayesian Model Selection (BMS) was used separately for each modality to find a winning family of DCM models separately for typically developing (TD) and RD children. BMS yielded the same winning family with modulatory effects on bottom-up connections from the input regions to middle temporal gyrus (MTG) and inferior frontal gyrus(IFG) with inconclusive evidence regarding top-down modulations. Bayesian Model Averaging (BMA) was thus conducted across models in this winning family and compared across groups. The bottom-up effect from the fusiform gyrus (FG) to MTG rather than the top-down effect from IFG to MTG was stronger in TD compared to RD for the visual modality. The stronge

    Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample

    Get PDF
    Two functionally related genes, FOXP2 and CNTNAP2, influence language abilities in families with rare syndromic and common nonsyndromic forms of impaired language, respectively. We investigated whether these genes are associated with component phenotypes of dyslexia and measures of sequential motor ability. Quantitative transmission disequilibrium testing (QTDT) and linear association modeling were used to evaluate associations with measures of phonological memory (nonword repetition, NWR), expressive language (sentence repetition), reading (real word reading efficiency, RWRE; word attack, WATT), and timed sequential motor activities (rapid alternating place of articulation, RAPA; finger succession in the dominant hand, FS-D) in 188 family trios with a child with dyslexia. Consistent with a prior study of language impairment, QTDT in dyslexia showed evidence of CNTNAP2 single nucleotide polymorphism (SNP) association with NWR. For FOXP2, we provide the first evidence for SNP association with component phenotypes of dyslexia, specifically NWR and RWRE but not WATT. In addition, FOXP2 SNP associations with both RAPA and FS-D were observed. Our results confirm the role of CNTNAP2 in NWR in a dyslexia sample and motivate new questions about the effects of FOXP2 in neurodevelopmental disorders

    Diffusion-Driven Looping Provides a Consistent Framework for Chromatin Organization

    Get PDF
    Chromatin folding inside the interphase nucleus of eukaryotic cells is done on multiple scales of length and time. Despite recent progress in understanding the folding motifs of chromatin, the higher-order structure still remains elusive. Various experimental studies reveal a tight connection between genome folding and function. Chromosomes fold into a confined subspace of the nucleus and form distinct territories. Chromatin looping seems to play a dominant role both in transcriptional regulation as well as in chromatin organization and has been assumed to be mediated by long-range interactions in many polymer models. However, it remains a crucial question which mechanisms are necessary to make two chromatin regions become co-located, i.e. have them in spatial proximity. We demonstrate that the formation of loops can be accomplished solely on the basis of diffusional motion. The probabilistic nature of temporary contacts mimics the effects of proteins, e.g. transcription factors, in the solvent. We establish testable quantitative predictions by deriving scale-independent measures for comparison to experimental data. In this Dynamic Loop (DL) model, the co-localization probability of distant elements is strongly increased compared to linear non-looping chains. The model correctly describes folding into a confined space as well as the experimentally observed cell-to-cell variation. Most importantly, at biological densities, model chromosomes occupy distinct territories showing less inter-chromosomal contacts than linear chains. Thus, dynamic diffusion-based looping, i.e. gene co-localization, provides a consistent framework for chromatin organization in eukaryotic interphase nuclei

    Long-term changes in lowland calcareous grassland plots using Tephroseris integrifolia subsp. integrifolia as an indicator species

    Get PDF
    We investigated the changes to calcareous grassland plots within protected sites, and whether Tephroseris integrifolia subsp. integrifolia can act as a useful indicator species for re-visitation studies within vegetation predicted to remain relatively stable. Twenty-two plots located across lowland England and all formerly containing T. integrifolia were re-surveyed following the methodology used in the original survey undertaken in the 1960s. Pseudo-turnover and between-observer bias were minimised by sampling replicate quadrats at each fixed plot using a single surveyor and at a similar time of year as the original survey. Qualitative details concerning grazing management were obtained for all sites. In contrast to other long-term re-visitation studies, all our study plots were intact and retained diverse, herb-rich vegetation, demonstrating the value of site protection. However, there were clear shifts in vegetation composition, most notably where T. integrifolia was absent, as shown by an increase in Ellenberg fertility and moisture signifying nutrient enrichment, and a decrease in the cover of low-growing, light-demanding specialists, with a change likely to be associated predominantly with grazing management. Whereas in the mid-20th century the greatest threat to calcareous grassland was habitat loss, undergrazing or temporary neglect now appears to pose the principal threat. Distinctive species such as T. integrifolia with marked sensitivity to habitat change provide a potentially useful tool for rapid assessment and monitoring of site quality. Focusing monitoring on such species allows non-expert observers to recognise the early stages of habitat degradation, providing, in effect, a “health check” on individual sites and groups of sites
    corecore