3,859 research outputs found

    One Loop Corrected Mode Functions for SQED during Inflation

    Full text link
    We solve the one loop effective scalar field equations for spatial plane waves in massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. The computation is done in two different gauges: a non-de Sitter invariant analogue of Feynman gauge, and in the de Sitter invariant, Lorentz gauge. In each case our result is that the finite part of the conformal counterterm can be chosen so that the mode functions experience no significant one loop corrections at late times. This is in perfect agreement with a recent, all orders stochastic prediction.Comment: 26 pages, uses LaTeX 2 epsilon, no figures, version 2 has an updated reference lis

    Yukawa Scalar Self-Mass on a Conformally Flat Background

    Full text link
    We compute the one loop self-mass-squared of a massless, minimally coupled scalar which is Yukawa-coupled to a massless Dirac fermion in a general conformally flat background. Dimensional regularization is employed and a fully renormalized result is obtained. For the special case of a locally de Sitter background our result is manifestly de Sitter invariant. By solving the effective field equations we show that the scalar mode functions acquire no significant one loop corrections. In particular, the phenomenon of super-adiabatic amplification is not affected. One consequence is that the scalar-catalyzed production of fermions during inflation should not be reduced by changes in the scalar sector before it has time to go to completion.Comment: 23 pages, LaTeX 2epsilon, 3 figures (uses axodraw

    Scalar Field Equations from Quantum Gravity during Inflation

    Full text link
    We exploit a previous computation of the self-mass-squared from quantum gravity to include quantum corrections to the scalar evolution equation. The plane wave mode functions are shown to receive no significant one loop corrections at late times. This result probably applies as well to the inflaton of scalar-driven inflation. If so, there is no significant correction to the ϕϕ\phi \phi correlator that plays a crucial role in computations of the power spectrum.Comment: 19 pages, 5 table

    General plane wave mode functions for scalar-driven cosmology

    Full text link
    We give a solution for plane wave scalar, vector and tensor mode functions in the presence of any homogeneous, isotropic and spatially flat cosmology which is driven by a single, minimally coupled scalar. The solution is obtained by rescaling the various mode functions so that they reduce, with a suitable scale factor and a suitable time variable, to those of a massless, minimally coupled scalar. We then express the general solution in terms of co-moving time and the original scale factor.Comment: 6 pages, revtex4, no figures, revised version corrects an embarrassing mistake (in the published version) for the parameter q_C. Affected eqns are 45 and 6

    A new tape product for optical data storage

    Get PDF
    A new tape product has been developed for optical data storage. Laser data recording is based on hole or pit formation in a low melting metallic alloy system. The media structure, sputter deposition process, and media characteristics, including write sensitivity, error rates, wear resistance, and archival storage are discussed

    A graviton propagator for inflation

    Full text link
    We construct the scalar and graviton propagator in quasi de Sitter space up to first order in the slow roll parameter ϵH˙/H2\epsilon\equiv -\dot{H}/H^2. After a rescaling, the propagators are similar to those in de Sitter space with an ϵ\epsilon correction to the effective mass. The limit ϵ0\epsilon\to 0 corresponds to the E(3) vacuum that breaks de Sitter symmetry, but does not break spatial isotropy and homogeneity. The new propagators allow for a self-consistent, dynamical study of quantum back-reaction effects during inflation.Comment: 23 page

    One Loop Back Reaction On Power Law Inflation

    Get PDF
    We consider quantum mechanical corrections to a homogeneous, isotropic and spatially flat geometry whose scale factor expands classically as a general power of the co-moving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger with the Feynman rules recently developed by Iliopoulos {\it et al.} We find no significant effect, in marked contrast with the result obtained by Mukhanov {\it et al.} for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov {\it et al.} to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back-reaction.Comment: 28 pages, LaTeX 2 epsilo

    Fields of accelerated sources: Born in de Sitter

    Full text link
    This paper deals thoroughly with the scalar and electromagnetic fields of uniformly accelerated charges in de Sitter spacetime. It gives details and makes various extensions of our Physical Review Letter from 2002. The basic properties of the classical Born solutions representing two uniformly accelerated charges in flat spacetime are first summarized. The worldlines of uniformly accelerated particles in de Sitter universe are defined and described in a number of coordinate frames, some of them being of cosmological significance, the other are tied naturally to the particles. The scalar and electromagnetic fields due to the accelerated charges are constructed by using conformal relations between Minkowski and de Sitter space. The properties of the generalized `cosmological' Born solutions are analyzed and elucidated in various coordinate systems. In particular, a limiting procedure is demonstrated which brings the cosmological Born fields in de Sitter space back to the classical Born solutions in Minkowski space. In an extensive Appendix, which can be used independently of the main text, nine families of coordinate systems in de Sitter spacetime are described analytically and illustrated graphically in a number of conformal diagrams.Comment: 37 pages, 23 figures, reformatted version of the paper published in JMP; low-resolution figures due to arXiv size restrictions; for the version with high-resolution figures see http://utf.mff.cuni.cz/~krtous/papers

    Plane waves in a general Robertson-Walker background

    Full text link
    We present an exact solution for the plane wave mode functions of a massless, minimally coupled scalar propagating in an arbitrary homogeneous, isotropic and spatially flat geometry. Our solution encompasses all previous solvable special cases such as de Sitter and power law expansion. Moreover, it can generate the mode functions for gravitons. We discuss some of the many applications that are now possible.Comment: 11 pages, revtex4, no figures, version 3 is vastly expanded (from 57 eqns to 166) to give an explicit expression for the transfer matrix, and to expand it in the ultraviolet and the infrared. We use the infrared limit to give an improved result for the gravitational wave contribution to CMB anisotropie

    One Loop Back Reaction On Chaotic Inflation

    Full text link
    We extend, for the case of a general scalar potential, the inflaton-graviton Feynman rules recently developed by Iliopoulos {\it et al.} As an application we compute the leading term, for late co-moving times, of the one loop back reaction on the expansion rate for V(ϕ)=12m2ϕ2V(\phi) = \frac12 m^2 \phi^2. This is expressed as the logarithmic time derivative of the scale factor in the coordinate system for which the expectation value of the metric has the form: dxμdxν=dtˉ2+a2(tˉ)dxdx dx^{\mu} dx^{\nu} = - d{\bar t}^2 + a^2({\bar t}) d{\vec x} \cdot d{\vec x}. This quantity should be a gauge independent observable. Our result for it agrees exactly with that inferred from the effect previously computed by Mukhanov {\it et al.} using canonical quantization. It is significant that the two calculations were made with completely different schemes for fixing the gauge, and that our computation was done using the standard formalism of covariant quantization. This should settle some of the issues recently raised by Unruh.Comment: 41 pages, LaTeX 2 epsilo
    corecore