3,394 research outputs found

    Graviton Loop Corrections to Vacuum Polarization in de Sitter in a General Covariant Gauge

    Full text link
    We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.Comment: 61 pages, 1 figure, 11 tables, version 2 (63 pages) revised for publication in CQ

    Single Graviton Loop Contribution to the Self-Mass of a Massless, Conformally Coupled Scalar on de Sitter Background

    Full text link
    We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the problem with the flat space correspondence limit that was pointed out by Fr\"ob [4]. We discuss how this computation will be used in a long-term project to purge the linearized effective field equation of gauge dependence.Comment: 26 pages, 1 figure, uses LaTeX 2e. Version 2 revised slightly for publicatio

    One loop graviton corrections to dynamical photons in de Sitter

    Full text link
    We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.Comment: 41 pages, no figures, uses LaTeX2

    Quantum Gravity Corrections to the One Loop Scalar Self-Mass during Inflation

    Full text link
    We compute the one loop corrections from quantum gravity to the self-mass-squared of a massless, minimally coupled scalar on a locally de Sitter background. The calculation was done using dimensional regularization and renormalized by subtracting fourth order BPHZ counterterms. Our result should determine whether quantum gravitational loop corrections can significantly alter the dynamics of a scalar inflaton.Comment: 47 pages, 3 figures, 20 tables, uses LaTeX 2 epsilon, version 2 revised for publication in Physical Review

    Origin Gaps and the Eternal Sunshine of the Second-Order Pendulum

    Full text link
    The rich experiences of an intentional, goal-oriented life emerge, in an unpredictable fashion, from the basic laws of physics. Here I argue that this unpredictability is no mirage: there are true gaps between life and non-life, mind and mindlessness, and even between functional societies and groups of Hobbesian individuals. These gaps, I suggest, emerge from the mathematics of self-reference, and the logical barriers to prediction that self-referring systems present. Still, a mathematical truth does not imply a physical one: the universe need not have made self-reference possible. It did, and the question then is how. In the second half of this essay, I show how a basic move in physics, known as renormalization, transforms the "forgetful" second-order equations of fundamental physics into a rich, self-referential world that makes possible the major transitions we care so much about. While the universe runs in assembly code, the coarse-grained version runs in LISP, and it is from that the world of aim and intention grows.Comment: FQXI Prize Essay 2017. 18 pages, including afterword on Ostrogradsky's Theorem and an exchange with John Bova, Dresden Craig, and Paul Livingsto

    The Fermion Self-Energy during Inflation

    Full text link
    We compute the one loop fermion self-energy for massless Dirac + Einstein in the presence of a locally de Sitter background. We employ dimensional regularization and obtain a fully renormalized result by absorbing all divergences with BPHZ counterterms. An interesting technical aspect of this computation is the need for a noninvariant counterterm owing to the breaking of de Sitter invariance by our gauge condition. Our result can be used in the quantum-corrected Dirac equation to search for inflation-enhanced quantum effects from gravitons, analogous to those which have been found for massless, minimally coupled scalars.Comment: 63 pages, 3 figures (uses axodraw.sty), LaTeX 2epsilon. Revised version (to appear in Classical and Quantum Gravity) corrects some typoes and contains some new reference

    The onset of solar cycle 24: What global acoustic modes are telling us

    Full text link
    We study the response of the low-degree, solar p-mode frequencies to the unusually extended minimum of solar surface activity since 2007. A total of 4768 days of observations collected by the space-based, Sun-as-a-star helioseismic GOLF instrument are analyzed. A multi-step iterative maximum-likelihood fitting method is applied to subseries of 365 days and 91.25 days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2 p-mode frequencies are then obtained from April 1996 to May 2009. While the p-mode frequency shifts are closely correlated with solar surface activity proxies during the past solar cycles, the frequency shifts of the l=0 and l=2 modes show an increase from the second half of 2007, when no significant surface activity is observable. On the other hand, the l=1 modes follow the general decreasing trend of the solar surface activity. The different behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted as different geometrical responses to the spatial distribution of the solar magnetic field beneath the surface of the Sun. The analysis of the low-degree, solar p-mode frequency shifts indicates that the solar activity cycle 24 started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1 tabl

    Explaining Large Electromagnetic Logarithms from Loops of Inflationary Gravitons

    Full text link
    Recent progress on nonlinear sigma models on de Sitter background has permitted the resummation of large inflationary logarithms by combining a variant of Starobinsky's stochastic formalism with a variant of the renormalization group. We reconsider single graviton loop corrections to the photon wave function, and to the Coulomb potential, in light of these developments. Neither of the two 1-loop results have a stochastic explanation, however, the flow of a curvature-dependent field strength renormalization explains their factors of ln(a)\ln(a). We speculate that the factor of ln(Hr)\ln(Hr) in the Coulomb potential should not be considered as a leading logarithm effect.Comment: 22 pages, uses LaTeX2e, slightly revised for publicatio

    Graviton Propagator in a 2-Parameter Family of de Sitter Breaking Gauges

    Full text link
    We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.Comment: 23 pages, 1 table, uses LaTeX2e, version 2 slightly revised for publicatio
    corecore