55 research outputs found

    Phase II control charts for autocorrelated processes

    Get PDF
    A large amount of SPC procedures are based on the assumption that the process subject to monitoring consists of independent observations. Chemical processes as well as many non-industrial processes exhibit autocorrelation, for which the above-mentioned control procedures are not suitable. This paper proposes a Phase II control procedure for autocorrelated and possibly locally stationary processes. A time-varying autoregressive (AR) model is proposed, which is capable of dealing with the autocorrelation as well as with local non-stationarities of the temporal process. Such non-stationarities are induced by the time-varying nature of the AR coefficients. The model is optimized during Phase I when it is assured that the process is in control and as a result the model describes accurately the process. The Phase II proposed control procedure is based on a comparison of the current time series model with an alternative model, measuring deviations from it. This comparison is carried out using Bayes factors, which help to establish the in-control or out-of-control state of the process in Phase II. Using the threshold rules of the Bayes factors, we propose a binomial-type control procedure for the monitoring of the process. The methodology of this paper is illustrated using two data sets consisting of temperature measurements at two different stages in the manufacturing of a plastic mould

    Monitoring proportions with two components of common cause variation

    Get PDF
    We propose a method for monitoring proportions when the in-control proportion and the sample sizes vary over time. Our approach is able to overcome some of the performance issues of other commonly used methods, as we demonstrate in this paper using analytical and numerical methods. The derivations and results are shown mainly for monitoring proportions, but we show how the method can be extended to the monitoring of count data

    A Head-to-Head Comparative Study of Control Charts based on Estimated Parameters

    Get PDF
    Implementation of the Shewhart, CUSUM, and EWMA charts requires estimates of the in-control process parameters. Many researchers have shown that estimation error strongly influences the performance of these charts. However, a given amount of estimation error may differ in effect across charts. Therefore, we perform a pairwise comparison of the effect of estimation error across these charts. We conclude that the Shewhart chart is more strongly affected by estimation error than the CUSUM and EWMA charts. Furthermore, we show that the general belief that the CUSUM and EWMA charts have similar performance no longer holds under estimated parameters

    On the Design of Control Charts with Guaranteed Conditional Performance under Estimated Parameters

    Get PDF
    When designing control charts the in‐control parameters are unknown, so the control limits have to be estimated using a Phase I reference sample. To evaluate the in‐control performance of control charts in the monitoring phase (Phase II), two performance indicators are most commonly used: the average run length (ARL) or the false alarm rate (FAR). However, these quantities will vary across practitioners due to the use of different reference samples in Phase I. This variation is small only for very large amounts of Phase I data, even when the actual distribution of the data is known. In practice, we do not know the distribution of the data, and it has to be estimated, along with its parameters. This means that we have to deal with model error when parametric models are used and stochastic error because we have to estimate the parameters. With these issues in mind, choices have to be made in order to control the performance of control charts. In this paper, we discuss some results with respect to the in‐control guaranteed conditional performance of control charts with estimated parameters for parametric and nonparametric methods. We focus on Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) control charts for monitoring the mean when parameters are estimated

    On the Design of Control Charts with Guaranteed Conditional Performance under Estimated Parameters

    No full text
    When designing control charts the in‐control parameters are unknown, so the control limits have to be estimated using a Phase I reference sample. To evaluate the in‐control performance of control charts in the monitoring phase (Phase II), two performance indicators are most commonly used: the average run length (ARL) or the false alarm rate (FAR). However, these quantities will vary across practitioners due to the use of different reference samples in Phase I. This variation is small only for very large amounts of Phase I data, even when the actual distribution of the data is known. In practice, we do not know the distribution of the data, and it has to be estimated, along with its parameters. This means that we have to deal with model error when parametric models are used and stochastic error because we have to estimate the parameters. With these issues in mind, choices have to be made in order to control the performance of control charts. In this paper, we discuss some results with respect to the in‐control guaranteed conditional performance of control charts with estimated parameters for parametric and nonparametric methods. We focus on Shewhart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) control charts for monitoring the mean when parameters are estimated

    Shewhart Control Charts with Guaranteed In-Control Performance

    Full text link
    The in-control performance of the Shewhart X ̅ and S2 control charts with estimated in-control parameters has been evaluated by a number of authors. Results indicate an unrealistically large amount of Phase I data is needed to have the desired in-control average run length (ARL) value in Phase II. To overcome this problem, it has been recommended that the control limits be adjusted based on a bootstrap method to guarantee that the in-control ARL is at least a specified value with a certain specified probability. In our paper we present simple formulas for the required control limits so that practitioners do not have to use the bootstrap method. An assumption of normality is required. The advantage of our proposed method is in its simplicity; there is no bootstrapping and the control chart constants do not depend on the Phase I sample data
    corecore