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Monitoring proportions with two components of common cause variation

Rob Goedharta and William H. Woodallb

aDepartment of Operations Management, University of Amsterdam, Amsterdam, Netherlands; bDepartment of Statistics, Virginia Tech,
Blacksburg, Virginia

ABSTRACT
We propose a method for monitoring proportions when the in-control proportion and the
sample sizes vary over time. Our approach is able to overcome some of the performance
issues of other commonly used methods, as we demonstrate in this paper using analytical
and numerical methods. The derivations and results are shown mainly for monitoring pro-
portions, but we show how the method can be extended to the monitoring of count data.

KEYWORDS
Attribute control chart;
control charts; Laney
method; p-chart; statistical
process monitoring

1. Introduction

Control charts are a common tool to monitor proc-
esses. When it comes to attribute data, the p- and np-
charts are widely used for monitoring proportions such
as the fraction of non-conforming products, while
other charts such as the c- and u-charts are used to
monitor counts such as the number of non-conform-
ities. See, for example, Woodall (1997) for a bibliog-
raphy and review on control charts for attributes.

The basic available control charts for attributes are
based on either the binomial or the Poisson distribu-
tion with the assumption of a constant in-control par-
ameter for the mean. The corresponding classical
control limits are then determined by the expected
sampling variation only. If common cause variability
is present between subgroups, these control limits
could be very misleading, as addressed by Alwan and
Roberts (1995), Heimann (1996), Laney (2002) and
Woodall (1997), among others. This issue is more
relevant when sample sizes are large, because then the
sampling variation diminishes and the control limits
move toward the center line, resulting in misleading
out-of-control signals. For small sample sizes, the
sampling variation can be relatively large compared to
the variation between subgroups, making this less of
an issue.

In practice, sample sizes can be quite large. The
application in Heimann (1996) involved monitoring
failure rates of circuits in a business telephone service
maintenance process. The average sample sizes were

in the thousands and hundreds of thousands. Hagan
and Li (2018) considered a pharmacy application
where the weekly proportions of narcotic prescriptions
involving hydrocodone were of interest and the sam-
ple sizes varied from 550 to 751. Mohammed and
Laney (2006) considered a healthcare application in
which hospital readmission rates were of interest and
sample sizes ranged up to 100,000. Laney (2002) men-
tioned that in some service industries sample sizes can
even run into the millions.

Laney (2002) proposed adjusted versions of the p-
and u-charts that aim to handle the case of varying
subgroup sizes when there is some common cause
variation between subgroups. The adjusted charts
were named the p0- and u0-chart. Laney’s methods
have been widely accepted. His charts have been
included in several textbooks, including Crossley
(2007), Provost and Murray (2011), and Montgomery
(2020). As pointed out by Vidmar and Blagus (2014),
his approach has also been incorporated into the fol-
lowing software packages: CHARTrunner 3.6, October
2009; WinChart Professional 4, February 2010; QI
Macros, October 2010; Minitab 16.2, October 2011;
and SigmaXL 6.1, December 2011. In addition, a con-
trol chart selection flowchart in Suman and Prajapati
(2018) directed practitioners to the Laney attribute
methods whenever the sample sizes were very large.

In our paper we show that the performance of the
method of Laney (2002) deteriorates when subgroup
sizes vary widely. In addition, we present an
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alternative estimation method that does not lead to
this problem, and demonstrate its good performance
in a variety of settings. We focus primarily on the
monitoring of proportions, but our method can easily
be applied to monitoring counts as well.

This paper is organized as follows. In the next sec-
tion we provide a motivational example to illustrate
the performance issues of the p-chart. In Section 3 we
elaborate on a more general model for variation and
the p0-chart from Laney (2002). In Section 4 we
explain our proposed method, and illustrate its per-
formance through a simulation study. In Section 5 we
provide a discussion as well as an illustrative compari-
son between our proposed method and the one of
Laney (2002). In Section 6 we briefly discuss the
extension to the Poisson case. Finally, in Section 7 we
provide some concluding remarks.

2. Motivation and background

The p-chart is used to detect special causes by moni-
toring the fraction of nonconforming products. An
important assumption for the construction of this
chart is that the data should follow a binomial distri-
bution with a constant in-control parameter. While
violation of this assumption does not necessarily lead
to issues directly, performance issues of the chart
become more noticeable if sample sizes are very large,
as recognized by Alwan and Roberts (1995), Heimann
(1996), Laney (2002) and Woodall (1997), among
others. As an illustrative example we consider non-
conformance data from 20 consecutive weeks of hos-
pital emergency department data records, as available
in Table 7.7 of Montgomery (2020) and displayed in
our Table 1. In Figure 1 the fraction nonconforming
is plotted, along with the classic p-chart control limits
(see e.g. Montgomery (2020)).

As can be observed, the control limits are very nar-
row compared to the variation in the data. Such nar-
row control limits, especially for larger sample sizes,
are a likely consequence of overdispersion, i.e. more
variability in the data than is predicted by the bino-
mial distribution (see e.g. Montgomery (2020)). This
additional variability is in turn a consequence of
many (small) influences varying between samples, i.e.
between-subgroup (also known as inter-subgroup)
common cause variation.

One possible approach to deal with this effect is to
treat the proportions as individual variables, as sug-
gested for example by the Western Electric Company
(1956) and Heimann (1996). However, one must be
careful not to over-aggregate the data over long

aggregation intervals, e.g., using weekly data as
opposed to daily or hourly data. As discussed by
Zwetsloot and Woodall (2021), over-aggregation can
lead to the masking of the effects of assignable causes
and loss of information about the process. This issue
was recognized in the Western Electric Company
(1956) referring to the use of sample sizes of hundreds
or thousands for monitoring proportions:

“When large amounts of data are combined on an
overall p-chart, these data may include many different
variations in raw material, part numbers, code
numbers, processing batches or inspection lots. These
are assignable causes that cannot be studied properly
except with individual p-charts at various operations.
Super-imposed on these ordinary types of causes,
however, may be large general shifts of trends that
affect the whole shop. The overall p-chart can be used
to study these broad shifts and trends by calculating its
control limits…”

Their recommended method for determining the
control limits was to use the control chart for individu-
als with the estimate of variability based on the average
moving range. This often recommended approach, how-
ever, does not take into account varying sample sizes
and cannot be used to separate the sampling variation
from the variation in the in-control parameter value.

To that end, Laney (2002) proposed an alternative
method for modifying the control limits of the p-chart
to account for overdispersion, while allowing varying
subgroup sizes. His approach introduces a multiplica-
tive correction of the estimated standard deviation,
based on the relative amount of process variation not
explained by the binomial assumption alone (a
detailed description follows in Section 3). The chart
resulting from this approach is often referred to as the

Table 1. Nonconformance data from 20 consecutive weeks of
hospital emergency data from Montgomery (2020).
Week Sample size Errors Fraction nonconforming

1 2500 187 0.0748
2 3000 345 0.1150
3 2245 210 0.0935
4 2900 185 0.0638
5 3650 376 0.1030
6 3119 412 0.1321
7 2415 241 0.0998
8 1985 156 0.0786
9 2430 200 0.0823
10 3620 412 0.1138
11 2765 254 0.0919
12 3800 275 0.0724
13 2600 185 0.0712
14 1875 210 0.1120
15 3125 298 0.0954
16 3900 450 0.1154
17 3850 325 0.0844
18 2350 256 0.1089
19 2145 198 0.0923
20 3450 300 0.0870
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p0-chart. In Figure 2 we illustrate the control limits
obtained using the method of Laney (2002) for the
dataset in Table 1. At first glance, the estimated con-
trol limits appear to reflect a much more suitable esti-
mation of common cause variation compared to the
p-chart limits.

In Montgomery (2020) it is shown that when
applying the method of Laney (2002) for this data-
set, the estimated standard deviation for each sub-
group in the p-chart has to be multiplied by a factor
3.87 to account for the variability not explained by
the binomial distribution alone. In terms of the vari-
ance, this means a multiplication by 14.98 (¼ 3:872).
In other words, with the method of Laney (2002) it
is estimated that the total variance is 14.98 times
larger than the intra-subgroup (or within-subgroup)
variance. That means that the intra-subgroup vari-
ance is estimated to be just 6.7% of the total vari-
ance. Thus, it would be expected that the differences
between control limits for different subgroups would
be very small as well. However, when taking a closer
look at the estimated control limits in Figure 2, we
observe substantial variation in the limits still. In
particular, consider for each subgroup the distance
between the upper control limit and the center value
of the chart. It turns out that the largest distance
(subgroup 14) is 44% larger than the smallest dis-
tance (subgroup 16). This is rather surprising given
the small impact (6.7%) of the intra-subgroup vari-
ation estimated earlier. In the next section we elab-
orate in more detail on the causes for this
phenomenon with the method of Laney (2002), and
the problems it can cause for the control chart per-
formance when sample sizes vary.

3. General model and Laney method

In this section we explain the general model used in
this paper, which includes the possibility of between-
subgroup common cause variation in addition to sam-
pling variation. Next, we describe the the p-chart and
Laney’s p0-chart in detail. Finally, we illustrate the per-
formance of the latter method for various settings.
Note that in this paper we use a slightly adjusted
notation compared to Laney (2002) to make the dis-
tinction between estimators and known parameters
more clear.

3.1. General model

We assume that in Phase I there are m independent
subgroups available, where for each subgroup i the
number of occurrences of the attribute of interest (Xi)
is drawn from a binomial distribution with parameter
pi. The corresponding subgroup size is denoted as ni.
Note that we do not assume pi to be constant over i
in the in-control state. Instead, we consider pi to be a
random variable itself with mean p0 and variance r2p:
This allows for the presence of some common cause
inter-subgroup variation. A common estimator of pi is
p̂i ¼ Xi=ni: Note that the variation in p̂i values is then
caused by two factors: the variation in pi values (inter)
and sampling variation (intra). This approach is simi-
lar to the approach of Woodall and Thomas (1995),
who described an estimation method for Shewhart �X
control charts based on several components of com-
mon cause variability. Some other similar methods
can be found in Chang and Gan (2004) and
Yashchin (1994).

Figure 1. Fraction of nonconforming in hospital emergency department data records using classic p-chart limits.
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For Xi � Binðni, piÞ we know that E½Xijpi� ¼ nipi
and VarðXijpiÞ ¼ nipið1� piÞ, so that E½p̂ijpi� ¼ pi

and Varðp̂ijpiÞ ¼ pið1�piÞ
ni

: Then, using the law of total

expectation and the law of total variance we find that
E½p̂i� ¼ p0 and

Varðp̂iÞ ¼ r2p̂ i

¼ E
pið1� piÞ

ni

� �
þ VarðpiÞ

¼ 1
ni

E pi½ � � E p2i
� �� �

þ r2p

¼ 1
ni

p0 � r2p � p20
� �

þ r2p

¼ p0ð1� p0Þ
ni

þ r2p 1� 1
ni

� 	
¼ r2W, i þ r2B, i

(1)

where r2W, i ¼ p0ð1�p0Þ
ni

and r2B, i ¼ r2p 1� 1
ni

� �
: Here r2W, i

represents the within (intra) subgroup variation if no
between (inter) subgroup variation were present (i.e.,
pi ¼ p0 for all i), while r2B, i represents the additional
variance due to the inter-subgroup variation in pi val-
ues. These two components determine the total vari-
ance of p̂i in our model. Note that r2p̂ i varies over i

due to varying sample sizes.
In the classic p-chart it is assumed that in the in-

control state all subgroups have the same parameter
pi ¼ p0, such that r2p ¼ 0: Common estimators of p0

and r2p̂ i in that case are p̂0 ¼
Pm

i¼1
XiPm

i¼1
ni
and r̂2

p̂ i
¼ r̂2

W, i ¼
p̂0ð1�p̂0Þ

ni
respectively, which are also used by Laney

(2002). The upper control limit (UCL) and lower con-
trol limit (LCL) of the p-chart are typically set at

p̂0 þ kr̂p̂i
and p̂0 � kr̂p̂i

, (2)

respectively, with k some positive constant most often
set to k¼ 3.

3.2. Laney’s p0-chart

Because the p-chart is based on the assumption of a
constant in-control parameter p0, it follows that all
the variation is assumed to be caused by intra-sub-
group variation. As argued by Laney (2002), this
assumption is seldom true in applications. Violation
of this assumption becomes a bigger problem when
subgroup sizes are very large, as this lowers the sam-
pling variation toward zero. Because the used esti-
mated control limits are based on sampling variation
only, they will move close to the center line. In that
situation, even minor inter-subgroup variation will
lead to an abundance of misleading out-of-control sig-
nals due to these narrow control limits. This was the
motivation for Laney (2002) to propose adjusted con-
trol limits, which incorporate inter-subgroup variation
as well as intra-subgroup variation. Advantages of his
method are also discussed in Mohammed and Laney
(2006) and Mohammed et al. (2013).

3.2.1. Laney’s adjustments

Consider p̂0 ¼
Pm

i¼1
XiPm

i¼1
ni

and r̂2
W, i ¼ p̂0ð1�p̂0Þ

ni
as estimates

of p0 and r2W, i, respectively, and consider p̂i ¼ Xi=ni:
In order to make the p̂i values more comparable (due
to different subgroup sample sizes ni, some samples
will have more sampling uncertainty than others),
Laney (2002) stated that one should “adjust each point

Figure 2. Fraction of nonconforming in hospital emergency department data records using the p0-chart limits of the method of
Laney (2002).
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for its unique intra-subgroup variation”. A z-score is
calculated as

zi ¼ p̂i � p̂0
r̂W, i

: (3)

Because the assumption of zero mean and unit
variance for the zi values relies on the assumption of
no inter-subgroup variation (which may not be a rea-
sonable assumption), Laney (2002) proposed to esti-
mate the actual variation in zi values. This was done
by calculating the average moving range (AMR) of the
zi’s to obtain the estimator

r̂z ¼ AMRðziÞ=1:128: (4)

As final step, Laney (2002) argued that the zi trans-
formation should be unraveled back into the p-plane.
This was done by expressing p̂i in terms of the com-
ponents p̂0, r̂W, i and zi, which leads to r̂p̂ i

¼ r̂zr̂W, i

as an estimator of the standard deviation of p̂i:
Consequently, the control limits for the p0-chart at
time i are constructed according to

UCLi ¼ p̂0 þ 3r̂zr̂W, i

LCLi ¼ p̂0 � 3r̂zr̂W, i:
(5)

In our view, this final step actually seems to rely on
the first step, as it incorporates the rationale behind the
choice of zi. The factor r̂z exists to compensate for the
violation of the assumption of a constant in-control
value for pi in the p-chart. Note that for the example
p0-chart illustrated in Figure 2 r̂z ¼ 3:87:

The method of Laney (2002) is based on the assump-
tion of a constant variance of the zi values, namely
rzi ¼ rz for all i. In order to evaluate the appropriate-
ness of this assumption, first consider replacing p̂0 and
r̂W, i by their assumed known parameter values p0 and
rW, i, respectively, in Eq. [3] to obtain

z�i ¼
p̂i � p0
rW, i

: (6)

From Eq. [1] it follows that z�i has expectation
E½z�i � ¼ 0 and variance

r2z�i ¼ 1þ r2B, i
r2W, i

¼ 1þ r2p
r2W, i

1� 1
ni

� 	

¼ 1þ r2p
p0ð1� p0Þ ðni � 1Þ: (7)

This variation of z�i is not constant over i, but
increases as ni increases. Note that when there is no
inter-subgroup variation (i.e., r2p ¼ 0), this is not an
issue because the z�i values then have (constant) unit
variance. However, when r2p 6¼ 0, it is clear that the
z�i values do not have constant variance when ni

varies, which is implicitly assumed in the approach of
Laney (2002).

3.2.2. Laney’s p0-chart performance
To illustrate the non-constant variance of zi values expli-
citly, we performed a simulation study. In particular, we
consider a Phase I sample consisting of m¼ 100 sub-
groups of size ni each. In our simulations, we consider a
simplified example where there are (at most) two differ-
ent values for ni in order to illustrate the effect of the
subgroup size. We consider the pi values to be drawn
from a uniform distribution Uðp0 � rp, p0 þ rpÞ, where
rp represents the “radius” of pi. This implies that rp ¼
2rpffiffiffiffi
12

p : Note that other distributions of pi may also be
used, but this is not of importance in the illustration
considered here. The first m=2 subgroups (i ¼ 1, :::, 50)
have sample size N1, while the second m=2 subgroups
(i ¼ 51, :::, 100) have sample size N2. Then, for p0 ¼ 0:1
and various combinations of N1, N2, and rp, we applied
the following simulation procedure:

1. Draw m independent values of pi from a uniform
distribution Uðp0 � rp, p0 þ rpÞ

2. Use the obtained pi values to draw m independent
values of Xi from a binomial distribution with
parameters ni and pi and calculate the corre-
sponding p̂i ¼ Xi=ni: Note that ni ¼ N1 for i ¼
1, :::,m=2 and ni ¼ N2 for i ¼ m=2þ 1, :::,m:

3. Calculate all m values of zi according to Eq. [3].
4. Calculate r̂z according to Eq. [4] for…

4(a). all m values of zi
4(b). the first m=2 values of zi (i.e., where ni ¼ N1).
4(c).the last m=2 values of zi (i.e., where ni ¼ N2).

5. Repeat steps 1 to 4 for 10,000 times, and calculate
the averages of the values from 4(a), 4(b) and 4(c).

The results of the simulation procedure are shown
in Table 2 for the cases rp ¼ 0, 0:025 and 0.05.
Because exchanging N1 and N2 leads to equivalent
results, Table 2 shows only unique combinations of
these two (e.g., N1 ¼ 500 and N2 ¼ 100 yields equiva-
lent results to N1 ¼ 100 and N2 ¼ 500). In the case
that rp ¼ 0, it can be seen that the zi values have con-
stant unit variance regardless of subgroup sizes. When
rp 6¼ 0, this is no longer the case. As long as subgroup
sizes are constant (i.e., N1 ¼ N2), zi values will have
constant variance, which means that the method of
Laney (2002) works well in estimating the variance of
the p̂i values. However, when the difference in ni val-
ues becomes larger, the assumption of constant vari-
ance of the zi values is no longer appropriate. This
deviation from a constant variance also becomes
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larger when there is more inter-subgroup variation
present (i.e., as rp becomes larger).

The consequence is that estimated control limits for
the p0-chart will be too wide for smaller samples, and
too narrow for larger samples. For example, consider
the case that N1 ¼ 100 and N2 ¼ 10, 000 for rp ¼ 0:05:
In that situation, the average estimate of rz from the
method of Laney (2002) equals 5.66. This implies that
one should multiply r̂W, i by 5.66 for each subgroup i to
calculate the control limits according to Eq. [5].
However, from Table 2 we also observe that the actual
variation of zi values is very different for the subgroups
with ni ¼ N1 compared to the ones with ni ¼ N2: In
this situation, the subgroups with ni ¼ N1 would only
require a multiplication of r̂W, i with around 1.39
instead of 5.66, such that using the latter results in con-
trol limits that are far too wide. At the same time, the
subgroups with ni ¼ N2 require a multiplication of r̂W, i

with around 9.90, such that 5.66 is not sufficient, and
control limits will be too narrow.

The issues with the Laney (2002) approach are a
result of modeling a correction for inter-subgroup
variation in a multiplicative manner relative to the
intra-subgroup variation. For small subgroup sample
sizes, one would expect intra-subgroup variation to be
more dominant compared to when subgroup sample
sizes become very large. In the method of Laney
(2002) however, the adjustment based on multiplica-
tion of r̂W, i with r̂z leads to standard deviation esti-
mates with an equal proportion of estimated inter-
subgroup variation, regardless of sample size.

As an additional illustration, consider rz�i , the
standard deviation of the z�i values, as can be obtained
from Eq. [7]. For two fixed values n1 and n2 it is pos-
sible to determine the ratio of standard deviations
rz�2=rz�1 : In Figure 3 this ratio is plotted on the vertical

axes, against the ratio of sample sizes n2=n1 on the
horizontal axes, for various combinations of rp and n1,
and p0 ¼ 0:1: As can be observed, the ratio rz�2=rz�1 is
far from one when sample sizes vary and inter-sub-
group variation is present. This deviation is larger the
further away the ratio of sample sizes is from one.
Also, the deviation is larger when more inter-sub-
group variation is present (larger values of rp), or
when sample sizes are larger (i.e. for the same sample
size ratio, but a larger absolute difference between n2
and n1). The method of Laney (2002) only leads to
appropriate limits when there is no inter-subgroup
variation present (rp ¼ 0). This indicates the need for
an alternative way to adjust control limits for control
charts for proportions when a practitioner believes
that there is inter-subgroup common cause variation.

4. New proposal

We propose adjusting for inter-subgroup variation in
an additive manner, rather than a multiplicative man-
ner. In this section we provide the required calcula-
tions for our proposed method, and illustrate its
performance by means of a simulation study.

4.1. Estimation of the control limits

Recall from Eq. [1] that p̂i has expectation zero and

variance r2p̂i ¼ r2W, i þ r2B, i ¼ p0ð1�p0Þ
ni

þ r2p 1� 1
ni

� �
,

where it is important to note that r2p̂ i varies over i

because of varying sample sizes. Consider di ¼
p̂i � p̂i�1, which has expectation E½di� ¼ 0 and vari-

ance r2di ¼ r2W, i þ r2W, i�1 þ r2B, i þ r2B, i�1 ¼ p0ð1�
p0Þ 1

ni
þ 1

ni�1

� �
þ r2p 2� 1

n1
� 1

ni�1

� �
, because p̂i and p̂i�1

Table 2. Average of r̂z values of the method of Laney (2002) for p0 ¼ 0:1 and various combinations of rp, N1, and N2.
Average of r̂z values

rp ¼ 0 rp ¼ 0:025 rp ¼ 0:05

N1 N2 all ni ni ¼ N1 ni ¼ N2 all ni ni ¼ N1 ni ¼ N2 all ni ni ¼ N1 ni ¼ N2

100 100 1.00 1.00 1.00 1.10 1.11 1.10 1.39 1.39 1.39
100 500 1.00 1.00 1.00 1.29 1.10 1.48 1.90 1.39 2.41
100 1,000 1.00 0.99 1.00 1.48 1.11 1.85 2.33 1.39 3.27
100 5,000 1.00 1.00 1.00 2.36 1.10 3.62 4.22 1.39 7.03
100 10,000 1.00 1.00 1.00 3.07 1.11 5.03 5.66 1.39 9.90
500 500 1.00 1.00 1.00 1.48 1.48 1.48 2.41 2.40 2.42
500 1,000 1.00 1.00 1.00 1.66 1.48 1.84 2.84 2.41 3.27
500 5,000 1.00 1.00 1.00 2.56 1.48 3.63 4.74 2.42 7.04
500 10,000 1.00 1.00 1.00 3.25 1.48 5.02 6.17 2.42 9.90
1,000 1,000 1.00 1.00 1.00 1.84 1.84 1.84 3.27 3.27 3.28
1,000 5,000 1.00 1.00 1.00 2.74 1.85 3.63 5.16 3.28 7.03
1,000 10,000 1.00 1.00 1.00 3.44 1.84 5.03 6.60 3.27 9.90
5,000 5,000 1.00 1.00 1.00 3.62 3.62 3.62 7.05 7.06 7.04
5,000 10,000 1.00 1.00 1.00 4.32 3.62 5.02 8.47 7.04 9.90
10,000 10,000 1.00 1.00 1.00 5.02 5.03 5.02 9.90 9.90 9.91
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are assumed to be independent. Next, consider the
case that m is even. We define an adjusted version of
the mean square successive differences (cf. Roes,
Does, and Schurink 1993) as

MSD� ¼ 1
m

Xm=2

i¼1

d22i ¼
1
m

Xm=2

i¼1

p̂2i � p̂2i�1

� �2
, (8)

which is based on differences of non-overlapping sets
of two successive observations. This ensures that the
d2i terms in the sum are independent. Next, since

E½d2i � ¼ r2di þ ðE½di�Þ2 ¼ r2di , it can then be determined

that

E MSD�½ � ¼ 1
m

Xm=2

i¼1

E d22i
� � ¼ 1

m

Xm
i¼1

r2B, i þ
1
m

Xm
i¼1

r2W, i

¼ r2p 1� 1
m

Xm
i¼1

1
ni

 !
þ 1
m

Xm
i¼1

p0ð1� p0Þ
ni

:

(9)

We can then estimate r2p by

r̂2
p ¼

1
m

Pm=2

i¼1
p̂2i � p̂2i�1

� �2 � 1
m

Pm
i¼1

p̂0ð1�p̂0Þ
ni

1� 1
m

Pm
i¼1

1
ni

: (10)

Note that there is a possibility for this estimator to
become negative, in which case we recommend to use
r̂2
p ¼ 0 instead. The obtained estimate of the inter-

subgroup variation can be used to provide an estimate
r̂2
p̂ i
of the variance for any subgroup i using

r̂2
p̂ i
¼ r̂2

W, i þ r̂2
B, i ¼

p̂0ð1� p̂0Þ
ni

þ r̂2
p 1� 1

ni

� 	
: (11)

The estimate from Eq. [11] can be used to calculate
the required control limits using Eq. [2].

4.2. Performance evaluation

In order to demonstrate the performance of the pro-
posed estimation method, we apply a similar simula-
tion method as in Section 3.2.2 with the same
combinations of N1, N2 and rp. In particular, the
applied simulation procedure is as follows:

1. Draw m independent values of pi from a uniform
distribution Uðp0 � rp, p0 þ rpÞ

2. Use the obtained pi values to draw m independent
values of Xi from a binomial distribution with
parameters ni and pi and calculate the corre-
sponding p̂i ¼ Xi=ni: Note that ni ¼ N1 for i ¼
1, :::,m=2 and ni ¼ N2 for i ¼ m=2þ 1, :::,m:

3. Calculate the value of r̂2
p and the resulting values

of r̂2
p̂ i

for each subgroup i, as described in
Section 4.1.

4. Calculate the ratio Yi ¼ r̂p̂ i
=rp̂ i for all m sub-

groups, with rp̂ i as in Eq. [1].
5. Calculate the average of…

5(a). the first m=2 values of Yi (i.e., where ni ¼ N1).
5(b). the last m=2 values of Yi (i.e., where ni ¼ N2).

6. Repeat steps 1 to 4 for 10,000 times, and calculate
the averages of the resulting values from 5(a)
and 5(b).

The results of the simulation procedure are shown
in Table 3 for the cases rp ¼ 0, 0:025, and 0.05. It can
be observed that when there is some inter-subgroup
variation present (rp ¼ 0:025 and rp ¼ 0:05), there is
little to no bias in the estimated standard deviations,
as the average ratios Yi are close to 1 for any combin-
ation of N1 and N2. Our method provides a fairly
unbiased estimate of rp̂ i in all cases.

In the special case that there is absolutely no inter-
subgroup variation (rp ¼ 0), there can be some bias in

Figure 3. Ratio of standard deviations rz�2=rz�1 (vertical axis) versus ratio of sample sizes n2=n1 (horizontal axis) for p0 ¼ 0:1 and
various values of n1 and rp.
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the proposed estimators. This bias is mostly present
for widely varying sample sizes, such as the situation
where N1 ¼ 100 and N2 ¼ 10, 000: Note that this is a
potential consequence of requiring r̂p to be non-nega-
tive. The larger intra-subgroup variation of the smaller
subgroups (e.g., N1 ¼ 100) can sometimes lead to
positive estimates from r̂p: Due to the small intra-
subgroup variation of the larger subgroups (e.g.
N2 ¼ 10, 000), this can lead to a positive bias in the
estimation when rp ¼ 0: The standard p-chart would
be used, however, if there were no inter-sub-
group variation.

5. Comparison and discussion

As observed in Section 3.2.2, the p0-charts as proposed
by Laney (2002) can have performance issues when
subgroup sizes vary substantially. To overcome this
issue, we have proposed an alternative control chart
design that accounts for inter-subgroup variation in
Section 4. Our proposed method is able to handle
varying subgroup sizes well. To illustrate the advan-
tage of the newly proposed method, we simulated
data in various scenarios and compared the control
limits of both methods. We also evaluated and com-
pared the false alarm rate (FAR) by means of simula-
tion study.

5.1. Comparison of control limits

To illustrate the difference in control limits, we simu-
lated Phase I samples consisting of m¼ 100 subgroups
of size ni ¼ nI ¼ 1, 000 each (i ¼ 1, :::, 100), with p0 ¼
0:1 and either no (rp ¼ 0) or substantial (rp ¼ 0:05)
inter-subgroup variation present. These data were
used for estimating the control limits for both

methods. We considered the same uniform distribu-
tion as in the simulation procedures from the previ-
ous sections, and used k¼ 3 in Eq. [2] for both
methods. In Phase II, we simulated m¼ 30 subgroups
of constant size ni ¼ nII each (i ¼ 101, :::, 130), with
several values of nII considered in the simulations. In
particular, we consider the values 100, 1,000 and
10,000 for nII, such that the situations nI > nII , nI ¼
nII , and nI < nII are all illustrated. The results are
shown in Figure 4. Note that the dashed control limits
represent the results of the method of Laney (2002),
and the solid control limits represent the results of
our method.

In the situation that there is zero inter-subgroup
variation (Figures 4a, c, and e), it can be observed
that there is not much difference in control limits
between the two methods. The difference depends
slightly on the Phase I sample, but other simulated
Phase I samples have led to similar results. However,
when there is substantial inter-subgroup variation, the
effect of varying subgroup sizes becomes quite clear.
In Figures 4b, d, and f it can easily be observed that
the method of Laney (2002) provides limits that are
too wide when ni is smaller in Phase II compared to
Phase I (nI > nII), and limits that are too narrow
when this is reversed (nI < nII). When the sample
sizes are identical in Phase I and Phase II (nI ¼ nII),
the difference between the two methods is not very
large, and is again subject to some sampling variation.

Although the considered scenarios are obviously
simplified, it is clear that the method of Laney (2002)
suffers from performance issues when sample sizes are
different in Phase II than in Phase I. This is due to
the multiplicative nature of the variance adjustment,
such that the adjustment is too little for subgroups of
larger size (small intra-subgroup variation), and too

Table 3. Average of Yi values of the proposed method for p0 ¼ 0:1 and various combinations of rp, N1, and N2.
Average of Yi values

rp ¼ 0 rp ¼ 0:025 rp ¼ 0:05

N1 N2 ni ¼ N1 ni ¼ N2 ni ¼ N1 ni ¼ N2 ni ¼ N1 ni ¼ N2

100 100 1.04 1.04 1.01 1.01 1.00 1.00
100 500 1.03 1.12 1.00 0.99 1.00 0.99
100 1,000 1.03 1.21 1.00 0.98 1.00 0.99
100 5,000 1.03 1.70 1.00 0.95 1.00 0.99
100 10,000 1.03 2.11 1.00 0.94 1.00 0.99
500 500 1.04 1.04 1.00 1.00 0.99 0.99
500 1,000 1.03 1.06 1.00 0.99 1.00 1.00
500 5,000 1.03 1.21 1.00 0.99 1.00 1.00
500 10,000 1.03 1.36 1.00 0.99 1.00 1.00
1,000 1,000 1.04 1.04 0.99 0.99 1.00 1.00
1,000 5,000 1.03 1.12 1.00 1.00 1.00 1.00
1,000 10,000 1.03 1.21 1.00 0.99 1.00 1.00
5,000 5,000 1.04 1.04 1.00 1.00 1.00 1.00
5,000 10,000 1.03 1.06 1.00 1.00 1.00 1.00
10,000 10,000 1.04 1.04 1.00 1.00 1.00 1.00
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much for subgroups of smaller size (large intra-sub-
group variation). In applications where the subgroup
sizes remain constant over time, both our method and
the p0-chart of Laney (2002) work well. However, our
method provides a more suitable alternative to deal
with inter-subgroup variation when subgroup sizes
vary. Note also that, similarly to the approach of
Laney (2002), our method can easily be extended to
the monitoring of count data, as discussed in
Section 6.

To relate it back to the motivational example in
section 2, consider again the hospital emergency data
from Table 1. Recall from section 2 that with the
method of Laney (2002) it was estimated that only
around 6.7% of the total variance is intra-subgroup
variance. In Figure 5 we plot the data and the control
limits of Laney (2002) again, but this time with the
control limits from our proposed method included in
the graph. As observed, the proposed limits are much
more stable in value, which should be the case when

Figure 4. Binomial-based Phase II control limits based on m¼ 100 simulated subgroups of size ni ¼ nI ¼ 1, 000 in Phase I
(i¼ 1,… ,100), with p0 ¼ 0:1 and various settings for rp and subgroup size ni ¼ nII in Phase II (i¼ 101,… ,130).

332 R. GOEDHART AND W. H. WOODALL



most of the variance is explained outside of the intra-
subgroup variation. This further illustrates that our
method is better able to handle data with varying sub-
group sizes when inter-subgroup variation is present.

5.2. Comparison of false alarm rates

As an additional comparison we evaluated and com-
pared the false alarm rates (FARs) of both methods.
When considering this, it is important to realize that
the actual FAR of any control chart depends on the dis-
tribution of the charting statistic. In our case the chart-
ing statistic is p̂i, for which the distribution in turn
depends on the distribution of pi. While the uniform
distribution is very suitable to demonstrate and com-
pare the accuracy of the estimation of the control limits
under various scenarios, it may not be representative
when considering the FAR. Instead, in order to use a
bell-shaped distribution for pi which still adheres to the
restriction 0 � pi � 1, we consider the truncated nor-
mal distribution for the pi values here. Additionally,

while we used substantial difference in sample sizes in
the previous examples to emphasize the estimation
issues, smaller differences may be more likely in prac-
tice. Therefore, we have also considered smaller stepwise
differences in sample sizes in this comparison.

In particular, we considered a Phase I scenario
with m¼ 100 subgroups with varying sample sizes.
The first ten subgroups (i ¼ 1, :::, 10) have sample size
ni ¼ nbase, the second ten subgroups (i ¼ 11, :::, 20)
have sample size ni ¼ 2nbase, and this continues up
until the last ten subgroups (i ¼ 91, :::, 100) which
have sample size ni ¼ 10nbase: We considered nbase ¼
100 and nbase ¼ 1, 000: For the parameters of the trun-
cated normal distribution we considered l ¼ 0:1, the
values 0, 0.025, and 0.05 for r, and truncation at the
values 0 (left) and 1 (right). For each combination of
nbase and r we simulated 100,000 Phase I samples. For
each simulated sample the control limits were calcu-
lated for the Laney method as well as the method pro-
posed in this paper. The FAR was then evaluated by
determining the proportion of false alarms at each

Figure 5. Fraction of nonconforming in hospital emergency department data records using the p0-chart limits of the method of
Laney (2002) and our proposed method.

Table 4. Simulated Phase I false alarm rates for control limits based on the method of Laney (2002) and our proposed method,
using Phase I samples with m¼ 100 and sample sizes ni varying from 100 to 1,000.

Laney Proposed

i ni r¼ 0 r ¼ 0:025 r ¼ 0:05 r¼ 0 r ¼ 0:025 r ¼ 0:05

1 to 10 100 0.0034 0.0000 0.0000 0.0022 0.0032 0.0037
11 to 20 200 0.0031 0.0002 0.0001 0.0021 0.0031 0.0032
21 to 30 300 0.0030 0.0005 0.0003 0.0019 0.0032 0.0030
31 to 40 400 0.0029 0.0012 0.0010 0.0018 0.0033 0.0027
41 to 50 500 0.0028 0.0025 0.0022 0.0017 0.0034 0.0027
51 to 60 600 0.0028 0.0045 0.0043 0.0017 0.0034 0.0027
61 to 70 700 0.0027 0.0075 0.0069 0.0016 0.0037 0.0026
71 to 80 800 0.0028 0.0109 0.0099 0.0016 0.0036 0.0024
81 to 90 900 0.0027 0.0153 0.0141 0.0015 0.0036 0.0024
91 to 100 1,000 0.0027 0.0205 0.0192 0.0015 0.0038 0.0024
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sampling time in the simulation. The results are sum-
marized separately for each unique ni to illustrate how
the varying sample sizes influence the number of false
alarms in both methods. The results of our simulation
are shown in Tables 4 and 5 for nbase ¼ 100 and
nbase ¼ 1, 000, respectively.

It can be observed from Tables 4 and 5 that if there
is no inter-subgroup variation (r¼ 0), both methods
have a rather stable FAR for the different subgroup
sizes. The FAR values are slightly lower for our pro-
posed method, which is in line with the results of
Table 3 that show that the estimated limits can be
slightly overestimated in this situation. When inter-
subgroup variation is introduced (r ¼ 0:025 and
r ¼ 0:05), substantial differences between both meth-
ods become visible. When considering the method of
Laney (2002), Tables 4 and 5 clearly show the vari-
ation in FAR values increase steadily as the sample
sizes increase. For example, when considering r ¼
0:025 in Table 4, the FAR varies from 0.0000 for ni ¼
100 to 0.0205 for ni ¼ 1, 000: In line with the results
of the previous sections, this shows that applying the
method of Laney (2002) in a situation with varying
sample sizes and inter-subgroup variation present
leads to control limits that are too wide for smaller
samples (resulting in smaller FAR), and too narrow
for larger samples (resulting in larger FAR). In this
same scenario, the FAR of our proposed method
varies much less (between 0.0031 and 0.0038). When
comparing the FAR values across all the considered
scenarios we also observe that the FAR varies substan-
tially less for our proposed method compared to the
method of Laney (2002), which means a more stable
and predictable control chart performance. Similar
results were found for other values for ni and r.

6. Extension to Poisson data

The extension of the binomial case to the Poisson
case requires a few small adjustments in the

procedure. In order to illustrate the performance of
the method in this setting, we reproduced Tables 2
and 3 and Figure 4 by making the following adjust-
ments to the (simulation) procedures of Sections 3
and 4:

1. Consider ui to be a random variable with mean
u0 and variance r2u, similar to pi. In our simula-
tions we consider ui to be drawn from the uni-
form distribution with radius ru, e.g.
ui � Uðu0 � ru, u0 þ ruÞ, such that ru ¼ 2ruffiffiffiffi

12
p :

(Note: contrary to pi, the Poisson rates ui could
be larger than 1, but the essence of the approach
remains unchanged).

2. Change Xi to Ci � PoissonðniuiÞ, the total num-
ber of nonconformities in subgroup i. Note that
in that case E½Cijui� ¼ VarðCijuiÞ ¼ niui, and
consequently E½Ci� ¼ niu0 and VarðCiÞ ¼ niu0 þ
n2i r

2
u:

3. Replace p̂i by ûi ¼ Ci=ni: Then, ûi has mean
E½ûi� ¼ u0 and variance VarðûiÞ ¼ u0

ni
þ r2u ¼

r2W, i þ r2B, i, where r2W, i ¼ u0=ni and r2B, i ¼ r2u:
Note that in this case r2B, i is constant for all i,
regardless of ni. Note also that this step changes
di into ûi � ûi�1, such that Eq. [8] becomes

MSD� ¼ 1
m

Xm=2

i¼1

d22i ¼
1
m

Xm=2

i¼1

ûi � ûi�1ð Þ2 (12)

and Eq. [9] becomes

E MSD�½ � ¼ 1
m

Xm=2

i¼1

E d22i
� � ¼ 1

m

Xm
i¼1

r2B, i þ
1
m

Xm
i¼1

r2W, i

¼ r2u þ
1
m

Xm
i¼1

u0
ni

:

(13)

4. Replace p̂0 by û0 ¼
Pm

i¼1
CiPm

i¼1
ni
:

Table 5. Simulated Phase I false alarm rates for control limits based on the method of Laney (2002) and our proposed method,
using Phase I samples with m¼ 100 and sample sizes ni varying from 1,000 to 10,000.

Laney Proposed

i ni r¼ 0 r ¼ 0:025 r ¼ 0:05 r¼ 0 r ¼ 0:025 r ¼ 0:05

1 to 10 1,000 0.0028 0.0000 0.0000 0.0018 0.0028 0.0024
11 to 20 2,000 0.0028 0.0000 0.0000 0.0018 0.0028 0.0023
21 to 30 3,000 0.0028 0.0001 0.0002 0.0017 0.0030 0.0022
31 to 40 4,000 0.0027 0.0009 0.0007 0.0017 0.0030 0.0023
41 to 50 5,000 0.0026 0.0026 0.0019 0.0016 0.0030 0.0022
51 to 60 6,000 0.0028 0.0054 0.0039 0.0016 0.0029 0.0021
61 to 70 7,000 0.0027 0.0097 0.0066 0.0016 0.0028 0.0021
71 to 80 8,000 0.0027 0.0148 0.0104 0.0015 0.0028 0.0020
81 to 90 9,000 0.0025 0.0215 0.0153 0.0014 0.0028 0.0020
91 to 100 10,000 0.0026 0.0286 0.0217 0.0015 0.0026 0.0020
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5. Estimate r2u by

r̂2
u ¼

1
m

Xm=2

i¼1

ûi � ûi�1ð Þ2 � 1
m

Xm
i¼1

û0

ni
: (14)

Similarly to the binomial case, we advise to use
r̂2
u ¼ 0 in the event that this estimator turns out

to become negative.
6. Estimate r2W, i and r2B, i by r̂2

W, i ¼ û0
ni

and r̂2
B, i ¼

r̂2
u, respectively. For the method of Laney (2002),

consider zi ¼ ûi�û0
r̂W, i

and r̂z ¼ AMRðziÞ=1:128
as before.

7. Use the obtained estimates in the previous step to
calculate r̂2

ûi
¼ r̂zr̂W, i for the method of Laney

(2002), and r̂2
ûi
¼ r̂2

B, i þ r̂2
W, i for our proposed

method. The UCL and LCL of each method can
then be calculated according to

û0 þ kr̂ûi and û0 � kr̂ûi , (15)

respectively, with k some positive constant most
often set to k¼ 3. We also consider k¼ 3 in our
simulations.

8. Run all further simulation procedures as before.
The results are given in Tables 6, 7, and Figure 6,
and are analogous to the results of the binomial
case in Tables 2, 3, and Figure 4 respectively. Our
method provides accurate estimates of the vari-
ance of the counts whereas in some cases the
method of Laney (2002) does not. In particular,
our method provides a substantial improvement
when sample sizes vary and there is inter-sub-
group variation present.

Table 6. Average of r̂z values of the method of Laney (2002) for the Poisson case with u0 ¼ 0:1 and various combinations of ru,
N1, and N2.
Average of r̂z values

ru ¼ 0 ru ¼ 0:025 ru ¼ 0:05

N1 N2 all ni ni ¼ N1 ni ¼ N2 all ni ni ¼ N1 ni ¼ N2 all ni ni ¼ N1 ni ¼ N2

100 100 0.99 0.99 0.99 1.09 1.09 1.09 1.35 1.35 1.35
100 500 1.00 0.99 1.00 1.27 1.09 1.44 1.84 1.35 2.32
100 1,000 1.00 1.00 1.00 1.44 1.09 1.78 2.24 1.35 3.13
100 5,000 1.00 1.00 1.00 2.27 1.09 3.45 4.03 1.35 6.68
100 10,000 1.00 1.00 1.00 2.94 1.09 4.78 5.39 1.35 9.39
500 500 1.00 1.00 1.00 1.44 1.44 1.44 2.31 2.31 2.31
500 1,000 1.00 1.00 1.00 1.61 1.44 1.78 2.72 2.31 3.12
500 5,000 1.00 1.00 1.00 2.45 1.44 3.45 4.52 2.32 6.70
500 10,000 1.00 1.00 1.00 3.11 1.44 4.78 5.87 2.31 9.40
1,000 1,000 1.00 1.00 1.00 1.78 1.78 1.78 3.12 3.12 3.12
1,000 5,000 1.00 1.00 1.00 2.62 1.78 3.45 4.90 3.11 6.68
1,000 10,000 1.00 1.00 1.00 3.28 1.78 4.78 6.28 3.12 9.42
5,000 5,000 1.00 1.00 1.00 3.45 3.45 3.45 6.68 6.69 6.68
5,000 10,000 1.00 1.00 1.00 4.12 3.45 4.78 8.04 6.69 9.39
10,000 10,000 1.00 1.00 1.00 4.78 4.78 4.78 9.40 9.40 9.40

Table 7. Average of Yi values of the proposed method for the Poisson case with u0 ¼ 0:1 and various combinations of ru, N1,
and N2.
Average of Yi values

ru ¼ 0 ru ¼ 0:025 ru ¼ 0:05

N1 N2 ni ¼ N1 ni ¼ N2 ni ¼ N1 ni ¼ N2 ni ¼ N1 ni ¼ N2

100 100 1.04 1.04 1.01 1.01 0.99 0.99
100 500 1.03 1.12 1.00 0.99 1.00 0.99
100 1,000 1.03 1.22 1.00 0.97 1.00 0.99
100 5,000 1.03 1.71 1.00 0.94 1.00 0.99
100 10,000 1.03 2.11 1.00 0.94 1.00 0.99
500 500 1.04 1.04 1.00 1.00 1.00 1.00
500 1,000 1.03 1.06 1.00 0.99 1.00 1.00
500 5,000 1.03 1.21 1.00 0.99 1.00 1.00
500 10,000 1.03 1.36 1.00 0.99 1.00 1.00
1,000 1,000 1.04 1.04 1.00 1.00 1.00 1.00
1,000 5,000 1.03 1.12 1.00 0.99 1.00 1.00
1,000 10,000 1.03 1.21 1.00 0.99 1.00 1.00
5,000 5,000 1.04 1.04 1.00 1.00 1.00 1.00
5,000 10,000 1.03 1.06 1.00 1.00 1.00 1.00
10,000 10,000 1.04 1.04 1.00 1.00 1.00 1.00
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7. Concluding remarks

We proposed a new method to calculate the control
limits when monitoring proportions. When inter-
subgroup common cause variation is present, the p-
chart is not able to provide suitable control limits as
subgroup sizes become larger. Laney (2002) provided
an alternative method to compensate for this vari-
ation. However, as shown in our paper, the pro-
posed method of Laney (2002) has performance

issues when subgroup sizes vary. We provide an
alternative procedure to estimate the control limits
of p-charts to overcome this issue. The results in
this paper show that the method is well able to han-
dle situations of varying subgroup sizes and inter-
subgroup variation. The proposed method can easily
be extended to other control charts for attribute
data, such as we demonstrated for Poisson
count data.

Figure 6. Poisson-based Phase II control limits based on m¼ 100 simulated subgroups of size ni ¼ nI ¼ 1, 000 in Phase I
(i¼ 1,… ,100), with u0 ¼ 0:1 and various settings for ru and subgroup size ni ¼ nII in Phase II (i¼ 101,… ,130).
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