82 research outputs found

    Aminophobanes:hydrolytic stability, tautomerism and application in Cr-catalysed ethene oligomerisation

    Get PDF
    The bicyclic aminophobanes have significantly different chemistry from their acyclic analogues Cy2PNHR′.</p

    B-Methylated Amine-Boranes:Substituent Redistribution, Catalytic Dehydrogenation, and Facile Metal-Free Hydrogen Transfer Reactions

    Get PDF
    Although the dehydrogenation chemistry of amine-boranes substituted at nitrogen has attracted considerable attention, much less is known about the reactivity of their B-substituted analogues. When the B-methylated amine-borane adducts, RR′NH·BH<sub>2</sub>Me (<b>1a</b>: R = R′ = H; <b>1b</b>: R = Me, R′ = H; <b>1c</b>: R = R′ = Me; <b>1d</b>: R = R′ = <i>i</i>Pr), were heated to 70 °C in solution (THF or toluene), redistribution reactions were observed involving the apparent scrambling of the methyl and hydrogen substituents on boron to afford a mixture of the species RR′NH·BH<sub>3–<i>x</i></sub>Me<sub><i>x</i></sub> (<i>x</i> = 0–3). These reactions were postulated to arise via amine-borane dissociation followed by the reversible formation of diborane intermediates and adduct reformation. Dehydrocoupling of <b>1a</b>–<b>1d</b> with Rh­(I), Ir­(III), and Ni(0) precatalysts in THF at 20 °C resulted in an array of products, including aminoborane RR′NBHMe, cyclic diborazane [RR′N–BHMe]<sub>2</sub>, and borazine [RN–BMe]<sub>3</sub> based on analysis by in situ <sup>11</sup>B NMR spectroscopy, with peak assignments further supported by density functional theory (DFT) calculations. Significantly, very rapid, metal-free hydrogen transfer between <b>1a</b> and the monomeric aminoborane, <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>, to yield <i>i</i>Pr<sub>2</sub>NH·BH<sub>3</sub> (together with dehydrogenation products derived from <b>1a</b>) was complete within only 10 min at 20 °C in THF, substantially faster than for the N-substituted analogue MeNH<sub>2</sub>·BH<sub>3</sub>. DFT calculations revealed that the hydrogen transfer proceeded via a concerted mechanism through a cyclic six-membered transition state analogous to that previously reported for the reaction of the <i>N</i>-dimethyl species Me<sub>2</sub>NH·BH<sub>3</sub> and <i>i</i>Pr<sub>2</sub>NBH<sub>2</sub>. However, as a result of the presence of an electron donating methyl substituent on boron rather than on nitrogen, the process was more thermodynamically favorable and the activation energy barrier was reduced

    Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables.</p> <p>Results</p> <p>Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature.</p> <p>Conclusion</p> <p>It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks) may be more than offset by increases in forest woody detritus decay rates (emission). Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO<sub>2</sub>, further research is suggested in the areas of forest detritus decay and production.</p

    The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Full text link
    We synthesize insights from current understanding of drought impacts at stand‐to‐biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand‐level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate‐induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought‐tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/1/gcb13160_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134257/2/gcb13160.pd

    Steady-state and pseudo-steady-state photocrystallographic studies on linkage isomers of [Ni(Et<sub>4</sub>dien)(η<sup>2</sup>-O,ON)(η<sup>1</sup>-NO<sub>2</sub>)]:Identification of a new linkage isomer

    Get PDF
    At temperatures below 150 K, the photoactivated metastable endo‐nitrito linkage isomer [Ni(Et4dien)(η2‐O,ON)(η1‐ONO)] (Et4dien=N,N,N′,N′‐tetraethyldiethylenetriamine) can be generated with 100 % conversion from the ground state nitro‐(η1‐NO2) isomer on irradiation with 500 nm light, in the single crystal by steady‐state photocrystallographic techniques. Kinetic studies show the system is no longer metastable above 150 K, decaying back to the ground state nitro‐(η1‐NO2) arrangement over several hours at 150 K. Variable‐temperature kinetic measurements in the range of 150–160 K show that the rate of endo‐nitrito decay is highly dependent on temperature, and an activation energy of Eact=+48.6(4) kJ mol−1 is calculated for the decay process. Pseudo‐steady‐state experiments, where the crystal is continually pumped by the light source for the duration of the X‐ray experiment, show the production of a previously unobserved, exo‐nitrito‐(η1‐ONO) linkage isomer only at temperatures close to the metastable limit (ca. 140–190 K). This exo isomer is considered to be a transient excited‐state species, as it is only observed in data collected by pseudo‐steady‐state methods

    A high-pressure crystallographic and magnetic study of Na5[Mn(l-tart)2]·12H2O (l-tart = l-tartrate)

    Get PDF
    The crystal structure and magnetic properties of the compound Na5[Mn(L-tart)2]•12H2O (1, L-tart = L-tartrate) have been investigated over the pressure range 0.34 – 3.49 GPa. The bulk modulus of 1 has been determined as 23.9(6) GPa, with a compression of the coordination spheres around the Na+ ions observed. 1 is therefore relatively incompressible, helping it to retain its magnetic anisotropy under pressure

    Solid-state interconversions: Unique 100% reversible transformations between the ground and metastable states in single-crystals of a series of nickel( II) nitro complexes

    Get PDF
    The solid-state, low-temperature linkage isomerism in a series of five square planar group 10 phosphino nitro complexes have been investigated by a combination of photocrystallographic experiments, Raman spectroscopy and computer modelling. The factors influencing the reversible solid-state interconversion between the nitro and nitrito structural isomers have also been investigated, providing insight into the dynamics of this process. The cis-[Ni(dcpe)(NO2)2] (1) and cis-[Ni(dppe)(NO2)2] (2) complexes show reversible 100 % interconversion between the η1-NO2 nitro isomer and the η1-ONO nitrito form when single-crystals are irradiated with 400 nm light at 100 K. Variable temperature photocrystallographic studies for these complexes established that the metastable nitrito isomer reverted to the ground-state nitro isomer at temperatures above 180 K. By comparison, the related trans complex [Ni(PCy3)2(NO2)2] (3) showed 82 % conversion under the same experimental conditions at 100 K. The level of conversion to the metastable nitrito isomers is further reduced when the nickel centre is replaced by palladium or platinum. Prolonged irradiation of the trans-[Pd(PCy3)2(NO2)2] (4) and trans-[Pt(PCy3)2(NO2)2] (5) with 400 nm light gives reversible conversions of 44 and 27 %, respectively, consistent with the slower kinetics associated with the heavier members of group 10. The mechanism of the interconversion has been investigated by theoretical calculations based on the model complex [Ni(dmpe)Cl(NO2)]

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore