1,244 research outputs found

    Fe nano-particle coatings for high temperature wear resistance

    No full text
    Oxidational wear continues to present an economic challenge for the replacement of components subject to high temperature fretting and sliding contacts in applications such as gas turbine engines. At elevated temperatures, low friction oxide ‘glaze’ layers can form and act as an interface between the contact and the substrate material. Whilst desirable, the glaze is formed from wear debris and often consumes the underlying substrate material. In order to induce rapid formation of low friction oxide layers without a severe ‘running-in’ period, nano particles of Fe in the range 5-10nm were deposited on ground flat ended pin and plate 080M40 substrates using a terminated gas condensation PVD process, to a thickness of 600nm. Coatings were tested in a reciprocating geometry at a fixed stroke length of 0.4mm, frequency of 31Hz and 40N normal load (1MPa contact stress) and at ambient, 300°C and 540°C. At ambient temperature the coated surfaces exhibited higher friction but lower wear compared to the uncoated substrates, whereas at elevated temperatures, the coated surfaces exhibited slightly lower steady state dynamic friction coefficients, and minimal changes in wear depth after a short incubation period. SEM of the worn surfaces indicated that hard oxide plateaus were responsible for the load bearing contact area at elevated temperatures. Cross sectional FIB, TEM and SIMS confirmed that at elevated temperatures, the nano-particle coating induced rapid formation of a nano-crystalline porous surface oxide film of mixed composition which protected the substrate from severe wear during the running-in period

    A techno-economic analysis of small-scale, biomass-fuelled combined heat and power for community housing

    Get PDF
    This paper presents the results of a techno-economic study into the feasibility of a number of biomass-fuelled CHP (BCHP) systems when operated in a community housing/mixed use context. Six systems comprising differing technologies have been analysed, with the assumption that the systems operate within an ESCO (energy services company) supply scenario. Actual demand data was obtained for a representative community housing scheme, along with technical performance and cost data on the various biomass CHP systems. Subsequently, an economic modelling tool was developed and a number of operational scenarios were analysed to determine the viability of specific systems and the sensitivity of the results to a range of technical and economic parameters. The impact of thermal storage was also considered in order to optimise heat usage as far as possible. The results indicate that within specific realistic ESCO operating scenarios, biomass CHP can demonstrate positive net present values without the need for capital subsidies. Optimal system design and implementation is critical for profitable operation and it is found that the best economic performance occurs for high load factors when the maximum quantity of both electricity and heat sold on-site is maximised. The results are also found to be very sensitive to a number of the model inputs

    Tidal turbines that survive?

    No full text
    Tidal turbines offer an exciting opportunity to exploit ocean current flows to generate sustainable energy. However, a key to their success is the ability to operate with minimal intervention in the ocean over extended periods (15-20 years). This talk explored the likely design and operational issues that will influence satisfactory performance associated with material corrosion and biofouling. The main difficulty is that turbine economic viability is capital driven so whole system, including operation and maintenance needs to be as cost-effective as possible. Although can use approaches developed from those applied for ship design and in the offshore industry there is a need to appreciate that cost-drivers are different. For instance a ‘Gold plated’ technology approach from oil and gas industry may not deliver cost-effective solutions

    Cone photoreceptor preservation with laser photobiomodulation in murine and human retinal dystrophy

    Get PDF
    Letter to EditorRobert J. Casson, John P. M. Wood, Jack Ao, Jagjit S. Gilhotra, Shane R. Durkin, James Muecke, WengOnn Chan, Glyn Chidlo

    Large Second Harmonic Kerr rotation in GaFeO3 thin films on YSZ buffered Silicon

    Full text link
    Epitaxial thin films of gallium iron oxide (GaFeO3) are grown on (001) silicon by pulsed laser deposition (PLD) using yttrium-stabilized zirconia (YSZ) buffer layer. The crystalline template buffer layer is in-situ PLD grown through the step of high temperature stripping of the intrinsic silicon surface oxide. The X-ray diffraction pattern shows c-axis orientation of YSZ and b-axis orientation of GaFeO3 on Si (100) substrate. The ferromagnetic transition temperature (TC ~ 215 K) is in good agreement with the bulk data. The films show a large nonlinear second harmonic Kerr rotation of ~15 degrees in the ferromagnetic state.Comment: 16 pages, 4 figures, To be published in J. Magn. Magn. Ma

    Atmospheric Heating and Wind Acceleration: Results for Cool Evolved Stars based on Proposed Processes

    Full text link
    A chromosphere is a universal attribute of stars of spectral type later than ~F5. Evolved (K and M) giants and supergiants (including the zeta Aurigae binaries) show extended and highly turbulent chromospheres, which develop into slow massive winds. The associated continuous mass loss has a significant impact on stellar evolution, and thence on the chemical evolution of galaxies. Yet despite the fundamental importance of those winds in astrophysics, the question of their origin(s) remains unsolved. What sources heat a chromosphere? What is the role of the chromosphere in the formation of stellar winds? This chapter provides a review of the observational requirements and theoretical approaches for modeling chromospheric heating and the acceleration of winds in single cool, evolved stars and in eclipsing binary stars, including physical models that have recently been proposed. It describes the successes that have been achieved so far by invoking acoustic and MHD waves to provide a physical description of plasma heating and wind acceleration, and discusses the challenges that still remain.Comment: 46 pages, 9 figures, 1 table; modified and unedited manuscript; accepted version to appear in: Giants of Eclipse, eds. E. Griffin and T. Ake (Berlin: Springer

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability

    Full text link
    Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the solar corona and farther away in the interplanetary medium. The method, based on the conservation principle of magnetic helicity, uses the relative magnetic helicity of the solar source region as input estimates, along with the radius and length of the corresponding CME flux rope. The method was initially applied to cylindrical force-free flux ropes, with encouraging results. We hereby extend our framework along two distinct lines. First, we generalize our formalism to several possible flux-rope configurations (linear and nonlinear force-free, non-force-free, spheromak, and torus) to investigate the dependence of the resulting CME axial magnetic field on input parameters and the employed flux-rope configuration. Second, we generalize our framework to both Sun-like and active M-dwarf stars hosting superflares. In a qualitative sense, we find that Earth may not experience severe atmosphere-eroding magnetospheric compression even for eruptive solar superflares with energies ~ 10^4 times higher than those of the largest Geostationary Operational Environmental Satellite (GOES) X-class flares currently observed. In addition, the two recently discovered exoplanets with the highest Earth-similarity index, Kepler 438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
    • …
    corecore