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Highlights 
 

1. An in-depth technoeconomic study of the feasibility of using a range of biomass CHP 

technologies within a community residential context has been carried. 

2. Daily and seasonal impacts of load variation on economics have been assessed. 

3. The role of thermal storage in terms of system economics is analysed  
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Abstract: This paper presents the results of a techno-economic study into the feasibility of a number of biomass fuelled 

CHP (BCHP) systems when operated in a community housing/mixed use context. Six systems comprising differing 

technologies have been analysed, with the assumption that the systems operate within an ESCO (energy services 

company) supply scenario. Actual demand data was obtained for a representative community housing scheme, along   

with technical performance and cost data on the various biomass CHP systems. Subsequently, an economic modelling 

tool was developed and a number of operational scenarios were analysed to determine the viability of specific systems 

and the sensitivity of the results to a range of technical and economic parameters. The impact of thermal storage was 

also considered in order to optimise heat usage as far as possible. The results indicate that within specific realistic 

ESCO operating scenarios, biomass CHP can demonstrate positive net present values without the need for capital 

subsidies. Optimal system design and implementation is critical for profitable operation and it is found that the best 

economic performance occurs for high load factors when the maximum quantity of both electricity and heat sold onsite 

is maximised. The results are also found to be very sensitive to a number of the model inputs.  

 

Keywords: Biomass, combined heat and power, economics, community housing, load profiles. 

 

1. INTRODUCTION 
 

1.1 Background 

With the current global focus on routes towards low and zero carbon economies, on-site community scale renewable 

heat and power generation is gaining increasing attention. Of the candidate renewable energy technologies, small-scale 

wind, photovoltaics (PV),  and solar thermal solutions provide both variable and site-specific energy yields, and the 

relatively low energy densities of such sources means that providing the entire energy needs of a whole community 

from these technologies is often impractical. In the absence of an available hydro or geothermal resource, non-

intermittent on-site renewable energy solutions are limited to heat pump and biomass solutions in most locations, with 

the latter offering the potential for combined electrical and thermal co-generation capability. Hence there is a significant 

current interest in small-scale (defined here as 30kWe to 1MWe) biomass-fuelled combined heat and power (BCHP) 

technologies. Such BCHP systems can operate using liquid, gaseous or solid fuels, including various waste streams, of 

which there is a considerable and underused resource base available [1].  

 

Previous research into the techno-economic viability of BCHP includes an early study of various biomass to electricity  

systems [2]. This showed direct relationships between delivered feedstock cost and cost of electricity generated at each 

output level and conversion technology, whilst all systems were  relatively sensitive to changes in overall capital cost 

and conversion efficiencies. A 2002 study [3]of biomass gasification CHP of 0.5-3.0MWe showed that feedstock 

moisture content had a significant impact on cost of electricity (COE), with a lowest COE of 8.67c/kWh for a biomass 

cost of €30/dtand that for every €10/dt increase in biomass cast, the cost of electricity increased by around  0.9c/kWh.  

Another study focussed on Eastern Greece [4], which showed that system viability was enhanced when a capital 

subsidy was available, the annual operating hours of the unit were relatively high, the self-consumption level (or the on-

site electrical loads) supplied is high and the cost of fuel is reasonable and stays relatively stable. A more recent study 

evaluated biomass trigeneration (TG) versus CHP and power only (PO) generation within a commercial context and 

found that [5]  the high capital cost of the TG plant reduces the economic viability for small scale systems, whilst the 

PO configuration suffers as the heat energy of the system is not recovered. The TG system  economic performance was 

also better in a building with a higher cooling load spread over a 12 month period. The study also  indicated a relatively 

small variation in breakeven electricity selling price from one fuel to another. An integrated study of bioelectricity 
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options [6] explored key lifecycle impacts for 250kW to 25MW systems and found that carbon savings per unit of 

electricity generated varied little for the candidate systems with only small distinctions from one system to the next. 

Stakeholder analysis also indicated that small and medium scale heat and CHP are preferable to large-scale electricity 

supply, as a use for local wood resources. These uses were believed to be better performing environmentally and 

socially. It should be noted that the current study differs from previous work in its focus on demand analysis, operating 

conditions and thermal storage aspects. 

 

In the present study, the the focus is primarily on solid wood fuel in the form of woodchip which can be produced from 

sources such as clean industrial and commercial wood waste, tree surgery waste and forestry residues to name a few 

examples.  However, where such biomass waste streams are utilised, consideration should be given to factors such as 

legislative constraints on usage, environmental impact and effects on equipment. A range of regulations and directives 

control how and where biomass derived fuels and conversion  technologies can be used, and these need to be 

understood before a biomass heat or power generation project is initiated. For example, whilst the EU‟s Waste 

Incineration  Directive [7] specifies comprehensive and relatively costly post-combustion gas treatment, untreated wood 

waste and residues from agriculture and forestry are excluded from its scope.  Consideration also needs to be given to 

the potential impacts of poor fuel quality on equipment operation and control; provided appropriate fuel quality control 

measures are implemented, effects on plant are manageable [8].  With increasing use of biomass for energy production, 

questions have arisen about the sustainability of differing types of bioenergy. In  terms of life-cycle impacts, a recent 

UK study [9] on wood-fuelled boilers indicated an embodied energy and carbon payback period ranging from 4-10 

months, with direct combustion emissions being of the most significant environmental impact, and a correlation being 

evident between plant load and lifecycle emissions of specific gas species.  It should be noted that considerations of 

lifecycle carbon emissions are likely to become a significant factor in assessing the sustainability of bioenergy systems, 

and as such those platforms that offer the highest overall operational efficiencies, especially when offsetting highly 

carbon intensive fossil energy supplies may have an advantage in applications that include full life-cycle analyses. 

 

1.2 Aims and Objectives 

Since the steam-cycle technology traditionally used in large-scale biomass CHP systems proves to be inefficient and 

relatively expensive when applied at small-scales, alternative systems have been developed to serve small-to-medium 

scale applications in developments such as housing complexes, leisure centres and industrial units. This study considers 

a number of commercially available systems based on organic Rankine cycle (ORC), gas turbine, Stirling engine and  

internal combustion platforms, with either direct combustion or gasification fuel conversion methods. Additional 

previous studies [10],[11] have assessed the feasibility of small-scale CHP in general terms for the purposes of aiding 

decision making and supporting technology development. In contrast, this study focuses on a specific application, 

namely a community housing development typical of a type and scale where biomass CHP may be considered, and 

explores in detail the technical and economic performance of the systems within this context. The analysis is performed 

from the perspective of an Energy Services Company (ESCO) responsible for the installation and maintenance of the 

system and the sale of heat and electricity to the residents of the housing development. This model of energy supply is 

gaining increasing attention internationally, and is often preferable for stakeholders such as developers or local 

authorities who wish to manage technical and financial risks associated with installing and operating schemes based on 

relatively new technologies and supply chains [12]. Additionally, within a community energy context, it is possible that 

preferential electricity and heat tariffs could help alleviate energy poverty for low income clients. In this case, an ESCO 

would sell locally generated heat and power at discounted tariffs compared to mainstream utility companies; however, 

any shortfall would need to be imported which may be at a loss depending on relative tariff structures. For this reason 

correct plant  sizing is very important, along with the capability for any surplus electricity to be sold back to a utility via 

the grid. If additional benefits such as feed-in-tariffs, capital grants or levy exemptions can be earned on electrical or 

thermal generation, this can provide an additional income stream and helps to improve system viability. Residential 

developments offer a potentially attractive proposition to ESCOs, as domestic energy tariffs are typically higher than 

commercial rates, and so a higher price can be charged than would be the case at an industrial complex or leisure centre, 

for example.  

 

 

2. METHODOLOGY 
 

2.1 Technology Platforms 

In contrast to standard natural gas fuelled CHP systems which almost invariably use internal combustion engines at 

small scale, BCHP systems vary widely in the technologies used and consequently in their performance characteristics. 

This is particularly true of systems using solid fuel as it must be converted to a form suitable for combustion in a gas 

engine, or otherwise unconventional prime movers must be used to generate electricity. Heat exchangers are then used 

to recover the waste heat. A range of systems with electrical outputs ranging from 35 to 400 kWe have been analysed 
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and are described briefly here. All systems can be operated on waste derived fuel, and the solid fuel systems can all 

operate on woodchip feedstock.  

 

2.1.1 Gasifier and Internal Combustion Engine (ICE) 

Solid biomass in the form of woodchip is converted to combustible gases by heating in a reduced oxygen environment 

in a downdraft gasifier. The gas is cleaned and combusted in a modified spark ignition or compression ignition engine. 

 

2.1.2 Organic Rankine Cycle (ORC) 

Solid biomass is combusted directly and the heat used to generate electricity in a closed Rankine cycle, similar to a 

traditional steam turbine system. However instead of using steam, which is inefficient and uneconomic at small scales, 

an organic fluid such as silicone oil or an alkylbenzene [13] is used in conjunction with a small turbine to increase the 

electrical efficiency of small systems.  

 

2.1.3 Indirectly Fired Gas Turbine (IFGT) 

Solid biomass is combusted directly. Electricity is generated via a small turbine operating in an open cycle. The heat 

from combustion is transferred via a heat exchanger to the working fluid, in this case compressed air, which is expanded 

through the turbine to generate electricity [14]. 

 

2.1.4 Stirling Engine Systems 

The Stirling Engine is a reciprocating external combustion engine. Any source of heat can be used, so systems using 

direct combustion of biomass or burning product gas from an updraft gasifier have been developed. The use of a 

gasifier results in higher electrical efficiencies, and the updraft gasifier is inherently more efficient than the downdraft 

type. Problems associated with high levels or tars in the product gas are less of an issue than when the gas is burned in 

an ICE as the gas does not come into contact with the inner workings of the Stirling Engine. 

 

2.1.5 Vegetable Oil-Fired Internal Combustion Engine 

Provided rigorous feedstock quality control is implemented, refined used cooking oil (UCO) from the food industry can 

be combusted in a modified internal combustion engine. There is competition for this feedstock from the biodiesel 

industry and as such the resource is limited [15], but UCO can be used more efficiently in a CHP unit and is not subject 

to the same level of  sector-specific taxation as it is when used as a transport fuel. Fuel prices are higher than solid fuel, 

but it has a higher energy density and capital costs are significantly lower than solid fuel systems.  

 

2.2 System Data 

For each of the above technologies, systems were chosen from  manufacturers in the EU and USA that specialise in a 

particular technology and have systems in commercial operation where possible. Technical and capital cost data for all 

candidate systems are given in Table 1 whilst table 2 shows other baseline economic parameters, including energy 

purchase . Capital and operational cost and energy sale price data were obtained from communications with individual 

manufacturers of each technology platform and systems integrators, along with reference to published sources from the 

EU and US and communications with utility companies [16],[17],[18],[19]. Reference was also made to the Chemical 

Engineering Plant Cost Index, with sub-system capital costs (including heat distribution infrastructure) included to 

assess the total capital cost needed to provide an operational system.  For the current study, the installation  of a single 

module was assumed in order to assess optimal development sizes for this single module scenario. Were multiple 

module installation to be considered, incremental capital and operational cost reductions accruing from the increased 

scale of installation should be considered as described in previous studies [20], [21].  

 

With regards cost of feedstock, recent (2007-2010) cost estimates of  bulk UK biomass feedstock  (including 

uncontaminated forestry waste) range from  €20 – 80 per tonne [22],[23],[24]. However, although not included in the 

current study, consideration should also be given where relevant to costs related to the establishment of dedicated 

supply chains and processing equipment that sources such as forestry residue, straw and short rotation coppice (SRC)  

may require. 

 

 For the external combustion engine platforms, electrical efficiencies are generally lower than those using internal 

combustion, and the technology is less mature in terms of numbers of commercially installed operational units. 

However, external combustion allows less stringent controls on impurities in combustion products and feedstock 

requirements, and has the potential for better reliability and lower maintenance requirements. Overall efficiencies are 

also slightly higher due to the lack of an intermediate conversion stage and associated losses. For comparative analysis 

across platforms, modelling was carried out for a single BCHP unit of each type within a community housing context. 

In reality, multiple BCHP units may be deployed in a modular fashion, depending on the thermal and electrical outputs 

of the generator and the scale of the housing development.  
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Table 1: Biomass CHP System Information. Key: ORC = Organic Rankine Cycle; IFGT = Indirectly Fired Gas 

Turbine; ICE = Internal Combustion Engine 

 

Table 2: Baseline Input Financial Parameters 

 

 

2.3 Model Development 

A numerical cashflow model was developed in order to assess the economic performance of the candidate BCHP 

platforms, using both system and demand data as inputs. Assessment of economic viability was carried out using a net 

present value (NPV) analysis for each platform. NPV is a measure that expresses the initial capital investment and all 

subsequent cash flows arising from imported energy costs and sales of generated energy as an equivalent amount at 

time zero. This approach is particularly appropriate when the cash flows associated with a single project or several 

competing alternatives vary over time, as is the case with a typical BCHP investment. The net present value of a cash 

flow at time t is given by: 

 

 


n

t
t

t

d

A
NPV

0 1
      (1) 

 

where At is the project‟s cash flow (revenues minus costs) in time t, with t taking values from year 0 to year n and d is 

the discount rate (an interest rate used to calculate the present value of future cash flows). When the calculated NPV is 

positive, the investment results in a rate of return greater than our minimum rate d, and in the absence of alternatives 

this would be a profitable investment. However, when the NPV is negative, the investment would not give a return at 

the minimum rate d, and indicates a non-profitable investment. 

 

The cashflow model allows the operation of the system to be adjusted hour by hour and allows many different scenarios 

to be evaluated, as described below in Section 3.4.  

 

Although only community housing was considered in this study, the model allows demand profiles for any development 

to be analysed if suitable data is available. Likewise, other base case assumptions may be adjusted depending on the 

specific context in which the model is applied.  

 

 

3. RESULTS AND DISCUSSION 
 

A techno-economic iterative analysis for each system was carried in which a sequence of improving approximate 

solutions (i.e. improved net present value) was analysed in conjunction with technical aspects, as a scenario that may 

appear economically attractive may not be technically feasible, and vice-versa. Initially, the analysis assumed no 

thermal energy storage capacity is available to address generation/load mismatch. Subsequently, the impact of short 

term (diurnal) thermal storage is assessed. 

 

3.1 Demand Profiles 

To simulate a typical social housing development, heat and electrical load profiles were generated using real data. 

Electrical profile data were obtained from an International Energy Agency programme [25] which has the specific remit 

of producing such profiles for simulating performance of CHP systems, and is ideally suited to this study. The data used 

is 5-minute averaged electricity demand data for 69 social housing properties in the UK. The data was manipulated to 

give hourly average data for use in the model. 

 

The heat demand profiles are based on real hourly average data from a 1,000 home community housing development, 

obtained from an independent study [26]. Since the two profiles were from different sources and concerned 

developments of differing sizes, the profiles were scaled to give an electric to heat ratio equal to the national average for 

UK social housing of 0.28, based on total yearly energy consumption [27]. The resulting electrical and heat profiles for 

a 100 dwelling development are shown in Fig. 1 and 2 respectively. Based on these studies, and in order to guage the 

annual energy requirements of the community, thermal and electrical energy use per dwelling were calculated as 

approximately 16,500kWh/yr and 4,600kWh/yr respectively.  

 

An average dwelling size of 75m
2
 was assumed based on the average size of the properties in the electrical demand 

study [25]. Using this dataset, various development sizes can be modelled with the profiles being scaled accordingly.  

 

Figure 1. Daily electrical demand profiles used in the analysis. 
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Figure 2. Daily thermal demand profiles used in the analysis. 

 

 

3.2 Scenarios 

Developments ranging in size from 50 to 1,000 dwellings were considered. Five modes of operation of the CHP plant 

were analysed: 

 

 On continuously. 

 On between 06:00 and 24:00 every day. 

 On between September and May, off in summer. 

 Electrically led.  

 Heat led. 

 

For the electrically and heat led scenarios only, BCHP operation was controlled using the demand scenarios described 

above, and the BCHP plant was set to modulate to match the hourly electrical or heat demand, or provide rated output 

when demand exceeds maximum output. The analysis is optimistic as it is assumed that efficiency is constant at partial 

load, whereas some reduction in part-load efficiency may be expected in reality. For the continuous and time-controlled 

modes, BCHP operation was not matched to demand scenarios, whilst electrical energy deficits were supplied via 

import from the grid. Revenues resulting from on-site electrical and heat energy sales were based upon relevant demand 

profiles, along with temporal calculations for excess heat generation. It should be noted at the outset that specific non-

heat or electrically led scenarios may offer improved economic feasibility but at the expense of lower system 

efficiencies as a significant proportion of generated heat is surplus to requirements. The model was used to determine 

the economic performance of each system for each mode of operation and development size. In all cases it has been 

assumed that surplus electricity can be exported via a Utility Power Purchase Agreement (PPA) or similar arrangement 

[29]. 

 

3.3 Development Size and Operation Mode 

A sample analysis showing the effect of operating mode for the downdraft gasifier ICE platform is shown in fig. 3, 

which is typical of all platforms except the oil fired ICE system. For all solid fuel systems the most financially attractive 

operational mode is found to be continuously on, day and night, all year round. This is the case for all development 

sizes. The reason for this is the relatively low price of wood fuel compared with imported gas and electricity, and the 

relatively high net electrical export price using base case assumptions.  The fuel price must climb considerably higher 

than the base case figure of €62/ODT before it becomes preferable to switch the unit off in times of low demand. 

However, high fuel prices result in systems that are invariably uneconomic regardless of how they are operated as seen 

in fig. 4. This is the case assuming electricity can be exported; without export the effect is to render the larger systems 

uneconomic, highlighting the importance of having a grid connection and a PPA or similar arrangement. Running 

continuously is also consistent with the best way to operate the system from a technical viewpoint. This is however at 

the expense of lower overall system efficiencies as a higher proportion of generated heat is rejected.  

 

Figure 3. Effect of operational mode for a downdraft gasifier based system. 
 

Figure 4. Effect of feedstock price on BCHP economics. 
 

The exception is the vegetable oil fuelled system, for which the fuel price is higher than the gas import price. This 

means it is preferable to follow the heat demand for a development of up to 900 dwellings, and above that to follow the 

electrical demand. The system performs optimally for a 1,000 dwelling development, so should be electrically led for 

optimum economic performance. However, using base case assumptions, the NPV is negative for all modes of 

operation though the performance of this system is very sensitive to specific parameters, such as the on-site sale price as 

a proportion of import price and feedstock fuel prices.  

 

Figure 5. Effect of community development size on BCHP economics. 
 

3.4 Economic Analysis: Base Case Results 

The results of the economic analysis using initial base case assumptions (Table 2) can be seen in Fig. 5. The economic 

performance of each system is presented in terms of the Net Present Value (NPV) based on a 15 year project life. Given 

no capital grant availability, none of the systems are predicted to have a positive NPV when installed in any size 

development, though all the solid fuel systems come close to break even in specific circumstances. The vegetable oil-

fuelled system performs particularly poorly. It is apparent that the various systems perform optimally at differing 

development sizes. It should be noted that the results indicated in  Fig. 5 only apply under the base case conditions. 
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There are many variables which, when adjusted, may significantly affect the economic performance, hence results 

presented here are indicative only and should not be considered in isolation. Subsequent analyses consider some of 

these variables in detail. 

 

The optimum development size and operating modes for each system are shown in Table 3.  All subsequent analysis is 

based on the optimum operating conditions for each system in Table 3. 

 

Table 3. Optimal community development size and operational modes for candidate BCHP 

systems. 
 

3.5 Thermal Storage 

Thermal storage can be used to smooth peaks and troughs in demand from hour to hour, resulting in more efficient 

operation. A simple assessment of the impact of thermal storage on the economics and efficiency of biomass CHP has 

been performed; assuming all excess heat on a particular day is stored with an efficiency of 90%, and released where 

demand exceeds supply. 

 

3.6 Impact of Capital Grants and Tax Relief 

It is not the aim of this study to analyse capital funding and other support measures in detail. However, where capital 

subsidies or tax allowances (such as enhanced capital allowances, where up to 100% of the capital cost of sustainable 

energy equipment may be written off against corporate tax liabilities) are available, significant impacts on viability are 

apparent. For example, a 100% corporation tax relief on the investment would typically lead to an effective reduction of 

7 – 8% on the capital cost. In this study, the impact of a 50% capital grant on the economic viability is presented below 

in Fig. 6. In this case, all the solid-fuel systems return a positive NPV for specific ranges of development sizes.  

 

Figure 6. Effect of a 50% capital grant on BCHP economics. 
 

3.7 Impact of Feedstock Price 

The maximum fuel prices that return a positive NPV under base case conditions are shown for each system in Table 4. 

It comes as no surprise that the economic performance is sensitive to the fuel price. All the solid fuel systems 

considered in this study operate on woodchip. Although feedstock prices can be very volatile, if prices of around €40 

per ODT or less are available (which probably limits feedstock to bulk waste-derived biomass and could require 

enhanced fuel quality assessment procedures), this  will enable solid fuel systems to return a positive NPV without any 

additional support [28]. With the 50% capital grant particularly higher fuel prices are necessary before the economic 

performance becomes unfavourable, which has the advantage of reducing the risks associated with fluctuating fuel 

prices in an immature market.  The fact that systems can operate profitably even on relatively expensive feedstock 

should be seen as an incentive for the wider expansion of wood fuel producers to help stimulate the biomass CHP 

market. Long term, fixed price fuel contracts would do much to reduce the financial risks and encourage investment. 

 

It should be noted that fuel price is particularly critical for the financial performance of the vegetable oil system. A 

variance of just 5c/litre results in a change of up to €850,000 in NPV over the lifetime of the system.  

 

Table 4: Maximum Fuel Prices Required to Return Positive NPV 
 

3.8 Electricity and Heat Revenue 

In community energy supply scenarios, an ESCO will often strive to provide heat and electricity to residents at a 

competitive price compared to a mainstream energy supplier. Minimising wholesale energy import prices (along with 

energy purchased to meet any on-site generation shortfall) whilst maximising electricity export prices via a PPA (to 

increase the value of any excess electrical generation) can be seen to improve economic viability. An NPV analysis 

showing the impact of net revenues is shown in Fig. 7, assuming a capital grant of 50%. This shows on-site energy 

selling prices expressed as a percentage of the import prices of electricity and gas needed to meet any daily and seasonal 

shortfall.  The analysis indicates that all solid fuel systems become economically viable as the price obtained for on-site 

electricity and heat sales exceeds 50-60% of the import price. However, for an optimal continuous operation scenario, 

whilst electrical and thermal net revenues are maximised., there is a drawback in that a significant proportion of 

generated thermal energy may need to be rejected (especially during the summer months). The larger systems are more 

sensitive to this parameter as they are selling a larger quantity of heat and electricity to on-site customers. The vegetable 

oil system becomes rapidly unprofitable as the sale price falls below 80% of the import price, though this is again 

highly dependent on the feedstock fuel price.   

 

Fig 7. Effect of relative electricity and heat sales price on BCHP economics. 
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At the time of writing, two key renewable energy generation-based incentives are in place or under consideration in the 

UK, namely the electrical Feed  in Tariff (FIT) scheme (for which BCHP is not eligible) and the forthcoming 

Renewable Heat Incentive scheme, which currently does include BCHP within its current list of eligible technologies 

[30]. In the current study, the effects of the prospective RHI tariffs have not been included in the analysis; however their 

potential impact can be assessed by assuming an additional heat sale price of between 3.0C/kWh and 8.7C/kWh, the 

effects of which can be seen by referring to the sensitivity analysis in figure 7. A similar approach can be employed to 

assess the impact of comparable energy generation incentives in other countries. Clearly, it is important to consider the 

impact of technical factors (such as electrical and heat generation efficiencies) when assessing the impact of specific 

electrical and thermal generation incentive schemes. In particular, the eligibility of BCHP in countries which currently 

have in place electrical generation-based incentives needs to be carefully assessed.  

 

3.9 Impact of Financial Parameters 

The underlying financial assumptions during the lifetime of the project such as  discount rate and inflation rate have a 

significant effect on the BCHP project economics. Given that such parameters are highly circumstantial, the base case 

assumes fairly pessimistic figures due to uncertainties associated with technology risk and the market, so as not to 

present a misleading or overly optimistic picture.  The results of a sensitivity study to model the effects of varying the 

discount rate is shown in Fig. 8, assuming no capital grants apply. It can be seen that the larger systems are more 

sensitive to variations in discount rates; the downdraft gasifier ICE and direct combustion ORC systems perform 

particularly well when discount rates are below 8%.  

 

Figure 8. Effect of discount rate on economic viability of candidate BCHP systems 
 

3.10 Effect of thermal storage 

The optimum operating conditions for the systems as described in section 2 give the best performance from an 

economic perspective assuming that generated heat cannot be stored. However, for this scenario, a significant 

proportion of the heat generated has to be disposed of.  If  this waste heat, which occurs at times of low thermal 

demand, could be stored it can then be used to meet peaks in daily demand, thus increasing heat sale revenue and 

increasing the overall efficiency of the system. Also, from a sustainability point of view, less fossil fuel needs to be 

imported thus reducing CO2 emissions and more efficient use of biomass resources. 

 

Fig 9. Proportion of heat rejected for candidate BCHP platforms operating under optimal 

economic conditions. 
 

Fig. 9 shows the proportion of heat that must be rejected  for each system in its economically optimum operational 

mode with and without short-term daily thermal storage, assuming negligible heat dissipation over this time scale.  It 

should be noted that the year-round impact of thermal storage is limited as it cannot be utilised effectively in the 

summer months since heat supply significantly exceeds demand for a high proportion of the time. The effect of storage 

on the NPV of each system is shown in Fig. 10, assuming base case assumptions, a 50% capital grant and zero cost for 

the storage system. For this scenario, the difference in NPV values for systems with and without storage represent the 

maximum viable cost of thermal storage when operating optimally from an economic viewpoint. Table 5 shows these 

data for each technology platform operating under optimum operational (including the optimal number of dwellings for 

each platform). It can be seen that systems with higher power to heat ratios generally benefit from higher levels of 

storage, and that specific maximum thermal storage costs (in terms of Euros/kWh) vary widely across platforms. This 

comparison is useful in enabling the economic feasibility of  storage options for various scenarios to be assessed, 

especially where system efficiency and flexibility are important factors. Overall efficiency could be further improved by 

utilising the waste heat for summer-time absorption chilling or distributing to nearby non-domestic clients with 

complementary heat demand profiles if this is possible [31]. 

 

Fig 10. NPV analysis for candidate BCHP platforms operating in optimal economic mode and 

assuming a 50% capital grant. 
 

Table 5: Maximum thermal storage investment costs for candidate BCHP platforms under 

optimal operating conditions. 
 

4. CONCLUSIONS 
 

The economic viability of small-scale biomass CHP is dependent on a number of parameters, but the results of this 

study indicate that appropriate sizing of BCHP systems for specific developments and electrical and thermal load 
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profiles is a crucial factor. The availability of up to capital grants, low interest loans or renewable energy generation 

tariffs can result in a positive NPV for all the solid fuel systems in specific scenarios. However, these scenarios are very 

sensitive to a number of financial parameters such as energy sale and import prices, fuel feedstock costs and discount 

rates. Where cost effective fuel supplies are available, all the considered systems can be viable without capital grant 

incentives, especially if beneficial net revenue streams arising from energy sales and generation-based incentives apply. 

It has been shown that the optimum operational mode for all the solid fuel systems is continuous operation, with the 

exception of the vegetable oil ICE system which is more economically viable in electrically led mode.. In terms of the 

optimum development size for a given generating platform, this occurs when the maximum quantity of electricity and 

heat is sold onsite, as excess heat is wasted and exported electricity is generally of lower value than that sold onsite. In 

general, smaller systems are less profitable than larger platforms. In summary, this study demonstrates that small-scale 

biomass CHP can be  economically feasible at the current time provided appropriate deployment circumstances pertain, 

and presents a potentially environmentally attractive method of generating electricity and heat using biomass feedstock.  
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Description Electric 

Power 

(kW) 

Thermal 

Output 

(kW) 

Electrical 

Efficiency 

Overall 

Efficiency 

Power: 

Heat 

Ratio 

Approx 

Installed 

Cost  

(Euro) 

Specific 

Cost 

(Euro/k

We) 

        
Direct Combustion, 

ORC 

200 980 14% 85% 0.20 1,250,000 5,950 

Direct Combustion, 

IFGT 

100 200 20% 80% 0.50 635,000 6,248 

Downdraft Gasifier, 

ICE 

250 500 23% 70% 0.50 1,350,000 5,355 

Direct Combustion, 

Stirling Engine 

35 215 12% 86% 0.16 250,000 7,140 

Updraft Gasifier, 

Stirling Engine 

35 145 18% 90% 0.24 250,000 7,140 

Modified ICE 400 630 33% 85% 0.63 900,000 2,231 

 

Table 1: Biomass CHP System Information. Key: ORC = Organic Rankine Cycle; IFGT = Indirectly 

Fired Gas Turbine; ICE = Internal Combustion Engine 

 

Table 1



Parameter Base Case Value 
Fuel Heating Value (Solid) 19 MJ/kg  
Fuel Heating Value (Oil) 37 MJ/kg 

Fuel Cost (Solid) €62/ODT  
Fuel Cost (Oil) 40c/litre 

Availability 

Operation & Maintenance Cost 

100% 

1c/kWh 
On-site Electricity Sale Price 10c/kWh 

On-site Heat Sale Price  2.5c/kWh  

Electricity Import Price 12ckWh 
Gas Import Price 2.8c/kWh 

Renewable generation tariff  3.4c/kWh 

Utility  power purchase price 8c/kWh 
Project Period 15 years 

Inflation rate (RPI) 4% 

Discount rate 10% 

 
Table 1: Baseline Input Financial Parameters 

 

Table 2



System 
Number of 

Dwellings 
Operation Mode 

Direct combustion, IFGT 200 Continuous 

Downdraft Gasifier, ICE 500 Continuous 

Direct combustion ORC 500 Continuous 

Direct Combustion, SE 100 Continuous 

Updraft Gasifier, SE 100 Continuous 

UCO Genset 1,000 Electrically Led 

 

 Table 3. Optimal community development size and operational modes for candidate BCHP systems. 

 

Table 3



System 

Maximum Fuel Price for 

Positive NPV (€/ODT) 

No Support 50% Grant 

   

Direct Combustion, IFGT 43 118 

Downdraft Gasifier, ICE 56 112 

Direct Combustion, ORC 56 93 

Direct Combustion, Stirling  42 81 

Updraft Gasifier, Stirling  45 100 

Vegetable Oil Genset 26c/litre 34c/litre 

 
Table 4: Maximum Fuel Prices Required to Return Positive NPV 

 

Table 4



System 

 

Power 

to heat 

ratio 

Maximum 

Storage 

Expenditure 

(Euro) 

Storage 

Capacity 

(kWh) 

Storage 

Capacity 

(kWh/ 

dwelling) 

Maximum 

specific 

storage cost 

(Euro/kWh) 

Direct 
Combustion, 

IFGT 

0.20 32,000 

 

1150 5.8 23.17 

  

Downdraft 

Gasifier, 
ICE 

0.50 79,000 
 

2875 5.8 23.15 
  

Direct 

Combustion, 

ORC 

0.50 109,000 

 

5910 11.8 15.47 

  

Direct 

Combustion, 

SE 

0.16 18,000 
 

 

1240 

 

 

12.4 

 
12.30  

 

      

Updraft 

Gasifier, SE 

0.24 

 

20,000 

 

767 

 

7.7 

 
           22.27  

 

UCO 
Genset 

 
0.63 95,000 

 
3542 

 
3.5 22.51 

 
Table 5: Maximum thermal storage investment costs for candidate BCHP platforms under optimal operating 

conditions. 

 

Table 5



 

Figure 1. Daily electrical demand profiles used in the analysis. 

Figure 1



 

Figure 2. Daily thermal demand profiles used in the analysis. 

Figure 2



 

Figure 3. Effect of operational mode for a downdraft gasifier based system. 

Figure 3



 

Figure 4. Effect of feedstock price on BCHP economics. 
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Figure 5. Effect of operation mode on downdraft biomass gasifier ICE system economics 

Figure 5



 
 

 

Figure 6. Effect of a 50% capital grant on BCHP economics. 
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Fig 7. Effect of relative electricityand heat sales price on BCHP economics. 
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Figure 8. Effect of discount rate on economic viability of candidate BCHP systems 
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Fig 9. Proportion of heat rejected for candidate BCHP platforms operating under 

optimal economic conditions. 
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Fig 10. NPV analysis for candidate BCHP platforms operating in optimal economic 

mode and assuming a 50% capital grant. 
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