34,536 research outputs found

    Radial Velocity Curves of Ellipsoidal Red Giant Binaries in the Large Magellanic Cloud

    Get PDF
    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.Comment: 10 pages, 8 figures, 3 table

    Mobility of Edge Dislocations in the Basal‐Slip System of Zinc

    Get PDF
    This paper presents the results of measurements of the velocities of 〈1210〉 (0001) edge dislocations in zinc as a function of applied shear stress. All tests were conducted at room temperature on 99.999% pure zinc monocrystals. Dislocations were revealed by means of the Berg‐Barrett x‐ray technique. Stress pulses of microsecond duration were applied to the test specimens by means of a torsion testing machine. Applied resolved shear stresses ranged from 0 to 17.2×10^6 dyn∕cm^2 and measured dislocation velocities ranged from 40–700 cm∕sec. The results of this study indicate that the velocity of edge dislocations in the basal slip system of zinc is linearly proportional to the applied resolved shear stress. These results are analyzed in terms of the phonon drag theory. Agreement between this theory and the results reported here is quite good

    A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve

    No full text
    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use

    Magellanic Cloud stars with TiO bands in emission: binary post-RGB/AGB stars or young stellar objects?

    Full text link
    Fourteen stars from a sample of Magellanic Cloud objects selected to have a mid-infrared flux excess have been found to also show TiO bands in emission. The mid-infrared dust emission and the TiO band emission indicate that these stars have large amounts of hot circumstellar dust and gas in close proximity to the central star. The luminosities of the sources are typically several thousand L_sun while the effective temperatures are 4000-8000 K. Such stars could be post-AGB stars of mass 0.4-0.8 M_sun or pre-main-sequence stars (young stellar objects) with masses of 7-19 M_sun. If the stars are pre-main-sequence stars, they are substantially cooler and younger than stars at the birth line where Galactic protostars are first supposed to become optically visible out of their molecular clouds. They should therefore be hidden in their present evolutionary state. The second explanation for these stars is that they are post-AGB or post-RGB stars that have recently undergone a binary interaction when the red giant of the binary system filled its Roche lobe. Being oxygen-rich, they have gone through this process before becoming carbon stars. Most of the stars vary slowly on timescales of 1000 days or more suggesting a changing circumstellar environment. Apart from the slow variations, most stars also show variability with periods of tens to hundreds of days. One star shows a period that is rapidly decreasing and we speculate that this star may have accreted a large blob of gas and dust onto a disk whose orbital radius is shrinking rapidly. Another star has Cepheid-like pulsations of rapidly increasing amplitude suggesting a rapid rate of evolution. Seven stars show quasi-periodic variability and one star has a light curve similar to that of an eclipsing binary.Comment: 15 pages, 2 tables, 8 figures, MNRAS, in pres

    A newly discovered stellar type: dusty post-red giant branch stars in the Magellanic Clouds

    Full text link
    Context: We present a newly discovered class of low-luminosity, dusty, evolved objects in the Magellanic Clouds. These objects have dust excesses, stellar parameters, and spectral energy distributions similar to those of dusty post-asymptotic giant branch (post-AGB) stars. However, they have lower luminosities and hence lower masses. We suggest that they have evolved off the red giant branch (RGB) instead of the AGB as a result of binary interaction. Aims: In this study we aim to place these objects in an evolutionary context and establish an evolutionary connection between RGB binaries (such as the sequence E variables) and our new sample of objects. Methods: We compared the theoretically predicted birthrates of the progeny of RGB binaries to the observational birthrates of the new sample of objects. Results: We find that there is order-of-magnitude agreement between the observed and predicted birthrates of post-RGB stars. The sources of uncertainty in the birthrates are discussed; the most important sources are probably the observational incompleteness factor and the post-RGB evolution rates. We also note that mergers are relatively common low on the RGB and that stars low on the RGB with mid-IR excesses may recently have undergone a merger. Conclusions: Our sample of dusty post-RGB stars most likely provides the first observational evidence for a newly discovered phase in binary evolution: post-RGB binaries with circumstellar dust.Comment: Accepted for publication in Astronomy and Astrophysics Letter

    Phonon entropy of alloying and ordering of Cu-Au

    Get PDF
    Inelastic neutron scattering spectra were measured with a time-of-flight spectrometer on six disordered Cu-Au alloys at 300 K. The neutron-weighted phonon density of states was obtained from a conventional analysis of these spectra. Several methods were developed to account for this neutron weighting and obtain the phonon entropy of the disordered alloys. The phonon entropies of formation of disordered fcc Cu-Au alloys obtained in this way were generally mutually consistent, and were also consistent with predictions from a cluster approximation obtained from ab-initio calculations by Ozolin[underaccent cedilla [below] s-breve, Wolverton, and Zunger. We estimate a phonon entropy of disordering of 0.15±0.05kB/atom in Cu3Au at 300 K. A resonance mode associated with the motions of the heavy Au atoms in the Cu-rich alloys was observed at 9 meV. An analysis of the resonance mode provided a check on the partial phonon entropy of Au atoms
    corecore