3 research outputs found

    Chlamydial IFN-γ immune evasion is linked to host infection tropism

    No full text
    Chlamydiae are obligate intracellular pathogens that can exhibit a broad host range in infection tropism despite maintaining near genomic identity. Here, we have investigated the molecular basis for this unique host-pathogen relationship. We show that human and murine chlamydial infection tropism is linked to unique host and pathogen genes that have coevolved in response to host immunity. This intimate host-pathogen niche revolves around a restricted repertoire of host species-specific IFN-γ-mediated effector responses and chlamydial virulence factors capable of inhibiting these effector mechanisms. In human epithelial cells, IFN-γ induces indoleamine 2,3-dioxygenase expression that inhibits chlamydial growth by depleting host tryptophan pools. Human chlamydial strains, but not the mouse strain, avoid this response by the production of tryptophan synthase that rescues them from tryptophan starvation. Conversely, in murine epithelial cells IFN-γ induces expression of p47 GTPases, but not indoleamine 2,3-dioxygenase. One of these p47 GTPases (Iigp1) was shown by small interfering RNA silencing experiments to specifically inhibit human strains, but not the mouse strain. Like human strains and their host cells, the murine strain has coevolved with its murine host by producing a large toxin possessing YopT homology, possibly to circumvent host GTPases. Collectively, our findings show chlamydial host infection tropism is determined by IFN-γ-mediated immunity

    Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach

    No full text
    Delftia sp. JD2 is a chromium-resistant bacterium that reduces Cr(VI) to Cr(III), accumulates Pb(II), produces the phytohormone indole-3-acetic acid and siderophores, and increases the plant growth performance of rhizobia in co-inoculation experiments. We aimed to analyze the biotechnological potential of JD2 using a genomic approach. JD2 has a genome of 6.76Mb, with 6,051 predicted protein coding sequences and 93 RNA genes (tRNA and rRNA). The indole-acetamide pathway was identified as responsible for the synthesis of indole-3-acetic acid. The genetic information involved in chromium resistance (the gene cluster, chrBACF,) was found. At least 40 putative genes encoding for TonB-dependent receptors, probably involved in the utilization of siderophores and biopolymers, and genes for the synthesis, maturation, exportation and uptake of pyoverdine, and acquisition of Fe-pyochelin and Fe-enterobactin were also identified. The information also suggests that JD2 produce polyhydroxybutyrate, a carbon reserve polymer commonly used for manufacturing petrochemical free bioplastics. In addition, JD2 may degrade lignin-derived aromatic compounds to 2-pyrone-4,6-dicarboxylate, a molecule used in the bio-based polymer industry. Finally, a comparative genomic analysis of JD2, Delftia sp. Cs1-4 and Delftia acidovorans SPH-1 is also discussed. The present work provides insights into the physiology and genetics of a microorganism with many potential uses in biotechnology
    corecore