5 research outputs found
Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI
Grana stacking in plant chloroplast thylakoid membranes dynamically responds to the light environment. These dynamics have been linked to regulation of the relative antenna sizes of PSI and PSII (state transitions), the PSII repair cycle, and the regulation of photosynthetic electron transfer. Here, we used 3D structured illumination microscopy, a subdiffraction-resolution fluorescence imaging technique, to investigate the light-intensity dependence, kinetics, reversibility, and regulation of dynamic thylakoid stacking in spinach (Spinacia oleracea) and Arabidopsis (Arabidopsis thaliana). Low-intensity white light (150 ÎŒmol photons mâ2 sâ1) behaved similarly to light preferentially exciting PSII (660 nm), causing a reduction in grana diameter and an increased number of grana per chloroplast. By contrast, high-intensity white light (1000 ÎŒmol photons mâ2 sâ1), darkness, and light preferentially exciting PSI (730 nm) reversed these changes. These dynamics occurred with a half-time of 7 to 8 min and were accompanied by state transitions. Consistent with this, the dynamics were dependent on STN7 (light-harvesting complex II [LHCII] kinase) and TAP38 (LHCII phosphatase), which are required for state transitions but were unaffected by the absence of STN8 (PSII kinase) or PSII core phosphatase (PSII phosphatase). Unlike state transitions, however, thylakoid stacking dynamics did not rely on the presence of the LHCI and PSI subunit L phospho-LHCII binding sites on PSI. Since oligomerization of thylakoid curvature protein (CURT1A) was unaffected by the absence of STN7 or TAP38, we conclude that the primary determinant of dynamic thylakoid stacking is LHCII phosphorylation
Comparative proteomics of thylakoids from Arabidopsis grown in laboratory and field conditions
Compared to controlled laboratory conditions, plant growth in the field is rarely optimal since it is frequently challenged by large fluctuations in light and temperature which lower the efficiency of photosynthesis and lead to photo-oxidative stress. Plants grown under natural conditions therefore place an increased onus on the regulatory mechanisms that protect and repair the delicate photosynthetic machinery. Yet, the exact changes in thylakoid proteome composition which allow plants to acclimate to the natural environment remain largely unexplored. Here, we use quantitative label-free proteomics to demonstrate that field-grown Arabidopsis plants incorporate aspects of both the low and high light acclimation strategies previously observed in laboratory-grown plants. Field plants showed increases in the relative abundance of ATP synthase, cytochrome b6f, ferredoxin-NADP+ reductases (FNR1 and FNR2) and their membrane tethers TIC62 and TROL, thylakoid architecture proteins CURT1A, CURT1B, RIQ1, and RIQ2, the minor monomeric antenna complex CP29.3, rapidly-relaxing non-photochemical quenching (qE)-related proteins PSBS and VDE, the photosystem II (PSII) repair machinery and the cyclic electron transfer complexes NDH, PGRL1B, and PGR5, in addition to decreases in the amounts of LHCII trimers composed of LHCB1.1, LHCB1.2, LHCB1.4, and LHCB2 proteins and CP29.2, all features typical of a laboratory high light acclimation response. Conversely, field plants also showed increases in the abundance of light harvesting proteins LHCB1.3 and CP29.1, zeaxanthin epoxidase (ZEP) and the slowly-relaxing non-photochemical quenching (qI)-related protein LCNP, changes previously associated with a laboratory low light acclimation response. Field plants also showed distinct changes to the proteome including the appearance of stress-related proteins ELIP1 and ELIP2 and changes to proteins that are largely invariant under laboratory conditions such as state transition related proteins STN7 and TAP38. We discuss the significance of these alterations in the thylakoid proteome considering the unique set of challenges faced by plants growing under natural conditions
Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation
Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response
Developmental acclimation of the thylakoid proteome to light intensity in Arabidopsis
Photosynthetic acclimation, the ability to adjust the composition of the thylakoid membrane to optimise the efficiency of electron transfer to the prevailing light conditions, is crucial to plant fitness in the field. While much is known about photosynthetic acclimation in Arabidopsis, to date there has been no study that combines both quantitative labelâfree proteomics and photosynthetic analysis by gas exchange, chlorophyll fluorescence and P700 absorption spectroscopy. Using these methods we investigated how the levels of 402 thylakoid proteins, including many regulatory proteins not previously quantified, varied upon longâterm (weeks) acclimation of Arabidopsis to low (LL), moderate (ML) and high (HL) growth light intensity and correlated these with key photosynthetic parameters. We show that changes in the relative abundance of cytb6f, ATP synthase, FNR2, TIC62 and PGR6 positively correlate with changes in estimated PSII electron transfer rate and CO2 assimilation. Improved photosynthetic capacity in HL grown plants is paralleled by increased cyclic electron transport, which positively correlated with NDH, PGRL1, FNR1, FNR2 and TIC62, although not PGR5 abundance. The photoprotective acclimation strategy was also contrasting, with LL plants favouring slowlyâreversible nonâphotochemical quenching (qI), which positively correlated with LCNP, while HL plants favoured rapidlyâreversible quenching (qE), that positively correlated with PSBS. The longâterm adjustment of thylakoid membrane grana diameter positively correlated with LHCII levels, while grana stacking negatively correlated with CURT1 and RIQ protein abundance. The data provide insights into how Arabidopsis tunes photosynthetic electron transfer and its regulation during developmental acclimation to light intensity
Recommended from our members
Preliterate phonological awareness and early literacy skills in Turkish
The role of preschool phonological awareness in early reading and spelling skills was investigated in the transparent orthography of Turkish. Fifty-six preschool children (mean age=5.6 years) were followed into Grade 2 (mean age=7.6 years). While preschool phonological awareness failed to make any reliable contribution to future reading skills, it was the strongest longitudinal correlate of spelling skills measured at the end of Grades 1 and 2. Overall findings suggested that phonological awareness may be differentially related to reading and spelling, and that spelling is a more sensitive index of phonological processing skills. In this study, verbal short-term memory emerged as the most powerful and consistent longitudinal correlate of reading speed. This finding raised important questions about the component processes of reading speed, and the role of memory and morphosyntactic skills in an agglutinative and transparent orthography such as Turkish