36,797 research outputs found

    Space shuttle main engine: Interactive design challenges

    Get PDF
    The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities

    Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    Get PDF
    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces

    Robot-Mediated Interviews with Children : What do potential users think?

    Get PDF
    Luke Wood, Hagen Lehmann, Kerstin Dautenhahn, Ben Robins, Austen Rayner, and Dag Syrdal, ‘Robot-Mediated Interviews with Children: What do potential users think?’, paper presented at the 50th Annual Convention of the Society for the Study of Artificial Intelligence and the Simulation of Behaviour, 1 April 2014 – 4 April 2014, London, UK.When police officers are conducting interviews with children, some of the disclosures can be quite shocking. This can make it difficult for an officer to maintain their composure without subtly indicating their shock to the child, which can in turn impede the information acquisition process. Using a robotic interviewer could eliminate this problem as the behaviours and expressions of the robot can be consciously controlled. To date research investigating the potential of Robot-Mediated Interviews has focused on establishing whether children will respond to robots in an interview scenario and if so how well. The results of these studies indicate that children will talk to a robot in an interview scenario in a similar way to which they talk to a human interviewer. However, in order to test if this approach would work in a real world setting, it is important to establish what the experts (e.g. specialist child interviewers) would require from the system. To determine the needs of the users we conducted a user panel with a group of potential real world users to gather their views of our current system and find out what they would require for the system to be useful to them. The user group we worked with consisted of specialist child protection police officers based in the UK. The findings from this panel suggest that a Robot-Mediated Interviewing system would need to be more flexible than our current system in order to respond to unpredictable situations and paths of investigation. This paper gives an insight into what real world users would need from a Robot-Mediated Interviewing system

    3-D Models of Embedded High-Mass Stars: Effects of a Clumpy Circumstellar Medium

    Full text link
    We use 3-D radiative transfer models to show the effects of clumpy circumstellar material on the observed infrared colors of high mass stars embedded in molecular clouds. We highlight differences between 3-D clumpy and 1-D smooth models which can affect the interpretation of data. We discuss several important properties of the emergent spectral energy distribution (SED): More near-infrared light (scattered and direct from the central source) can escape than in smooth 1-D models. The near- and mid-infrared SED of the same object can vary significantly with viewing angle, depending on the clump geometry along the sightline. Even the wavelength-integrated flux can vary with angle by more than a factor of two. Objects with the same average circumstellar dust distribution can have very different near-and mid-IR SEDs depending on the clump geometry and the proximity of the most massive clump to the central source. Although clumpiness can cause similar objects to have very different SEDs, there are some observable trends. Near- and mid-infrared colors are sensitive to the weighted average distance of clumps from the central source and to the magnitude of clumpy density variations (smooth-to-clumpy ratio). Far-infrared emission remains a robust measure of the total dust mass. We present simulated SEDs, colors, and images for 2MASS and Spitzer filters. We compare to observations of some UCHII regions and find that 3-D clumpy models fit better than smooth models. In particular, clumpy models with fractal dimensions in the range 2.3-2.8, smooth to clumpy ratios of <50%, and density distributions with shallow average radial density profiles fit the SEDs best.Comment: accepted to ApJ; version with full-res figures: http://www.astro.virginia.edu/~ri3e/clumpy3d.pd

    Tracking errors and optical scatter in a solar tracker with linear regression error correction

    Get PDF
    March 1998.Also issued as Norman Bryce Wood's thesis (M.S.) -- Colorado State University, 1998.Includes bibliographical references.Tracking errors were assessed for a computer controlled solar tracker. The effects of optical scattering on radiometric measurements performed with the tracker were also evaluated. As the position of the tracker is iteratively corrected over time, linear regression is used to calculate a best-fit correction for tracking error. The performance of the tracker was found to be sensitive to the timing of the iterative corrections and to the errors associated with those corrections. Using an optimized scheme for iterative corrections in a field test, the average tracking error was found to be 0.11 ± 0.05 degrees for 48 hours following the final iterative correction. The solar tracker may be fitted with a mirror which can reflect the image of a target into an instrument. Because the mirror is exposed to multiple sources of illumination (direct sunlight, skylight, and light from surrounding objects) the scattering properties of the mirror are important. The intensity of light scattered from the mirror was compared with the intensity of diffuse skylight. Scatter from the diffuse field incident on the mirror (background scatter) was found to be more significant than scatter from the direct solar beam, and both were significant compared to the intensity of diffuse skylight. Background scatter ranged from 20% to 70% of the total measured signal, depending on scattering geometry and wavelength. Solar scatter ranged from 1% to 20%, also depending on scattering geometry and wavelength. The scattering properties of the mirror, as measured by the bidirectional reflectance distribution function, appeared to be anisotropic, possibly because of surface defects. For the wavelengths examined, the scattering properties did not follow the wavelength scaling law predicted by Rayleigh-Rice theory for clean, smooth, front-surface reflectors.Sponsored by the National Aeronautics and Space Administration (grant no. NAG1-1704); the Office of Naval Research (contract no. N00014-91-J-1422); and the Department of Defense Center for Geoscience Phase II (contract no. DAAH04-94-G-0420)

    Light elements in the Earth’s core

    Get PDF
    Constraining the core’s composition is essential for understanding Earth accretion, core formation and the sustainment of Earth’s magnetic field. Earth’s outer and inner core exhibit a density deficit relative to pure iron, attributed to the presence of substantial amounts of low atomic number ‘light’ elements, such as sulfur, silicon, oxygen, carbon and hydrogen. However, owing to its inaccessibility, estimates of core composition can only be indirectly obtained by matching results from high-pressure experiments and theoretical calculations with seismic observations. In this Review, we discuss the properties and phase relations of iron alloys under high-pressure and high-temperature conditions relevant to the Earth’s core. We synthesize mineral physics data with cosmochemical and geochemical estimates to give the likely range of compositions for the outer (Fe + 5% Ni + 1.7% S + 0–4.0% Si + 0.8–5.3% O + 0.2% C + 0–0.26% H by weight) and inner (Fe + 5% Ni + 0–1.1% S + 0–2.3% Si + 0–0.1% O + 0–1.3% C + 0–0.23% H by weight) core. While the exact composition of the core remains unknown, tighter constraints on core temperature and better connections between the solid inner core and the liquid outer core compositions will help narrow the range of potential light element compositions

    A DC magnetic metamaterial

    Get PDF
    Electromagnetic metamaterials are a class of materials which have been artificially structured on a subwavelength scale. They are currently the focus of a great deal of interest because they allow access to previously unrealisable properties like a negative refractive index. Most metamaterial designs have so far been based on resonant elements, like split rings, and research has concentrated on microwave frequencies and above. In this work, we present the first experimental realisation of a non-resonant metamaterial designed to operate at zero frequency. Our samples are based on a recently-proposed template for an anisotropic magnetic metamaterial consisting of an array of superconducting plates. Magnetometry experiments show a strong, adjustable diamagnetic response when a field is applied perpendicular to the plates. We have calculated the corresponding effective permeability, which agrees well with theoretical predictions. Applications for this metamaterial may include non-intrusive screening of weak DC magnetic fields.Comment: 6 pages, 3 figure

    Anisotropic charge transport in non-polar GaN QW: polarization induced charge and interface roughness scattering

    Full text link
    Charge transport in GaN quantum well (QW) devices grown in non-polar direction has been theoretically investigated . Emergence of anisotropic line charge scattering mechanism originating as a result of anisotropic rough surface morphology in conjunction with in-plane built-in polarization has been proposed. It has shown that in-plane growth anisotropy leads to large anisotropic carrier transport at low temperatures. At high temperatures, this anisotropy in charge transport is partially washed out by strong isotropic optical phonon scattering in GaN QW.Comment: 4 pages, 4 figure
    corecore