14,598 research outputs found
Two Conditions for Galaxy Quenching: Compact Centres and Massive Haloes
We investigate the roles of two classes of quenching mechanisms for central
and satellite galaxies in the SDSS (): those involving the halo and
those involving the formation of a compact centre. For central galaxies with
inner compactness ,
the quenched fraction is strongly correlated with
with only weak halo mass dependence. However, at higher and lower
, sSFR is a strong function of and mostly
independent of . In other words, divides galaxies into those with high sSFR
below and low sSFR above this range. In both the upper and lower regimes,
increasing shifts the entire sSFR distribtuion to lower sSFR
without a qualitative change in shape. This is true even at fixed , but
varying at fixed adds no quenching information. Most of the
quenched centrals with are dense (), suggesting compaction-related
quenching maintained by halo-related quenching. However, 21% are diffuse,
indicating only halo quenching. For satellite galaxies in the outskirts of
halos, quenching is a strong function of compactness and a weak function of
host . In the inner halo, dominates quenching, with
of the satellites being quenched once . This regional effect is greatest for the least massive
satellites. As demonstrated via semi-analytic modelling with simple
prescriptions for quenching, the observed correlations can be explained if
quenching due to central compactness is rapid while quenching due to halo mass
is slow.Comment: 16 pages, 11 figures, MNRAS accepte
Interplay of disorder and geometrical frustration in doped Gadolinium Gallium Garnet
The geometrically-frustrated, triangular antiferromagnet GGG exhibits a rich
mix of short-range order and isolated quantum states. We investigate the
effects of up to 1% Neodymium substitution for Gallium on the ac magnetic
response at temperatures below 1 K in both the linear and nonlinear regimes.
Substitutional disorder actually drives the system towards a more perfectly
frustrated state, apparently compensating for the effect of imperfect
Gadolinium/Gallium stoichiometry, while at the same time more closely
demarcating the boundaries of isolated, coherent clusters composed of hundreds
of spins. Optical measurements of the local Nd environment substantiate the
picture of an increased frustration index with doping.Comment: 5 pages, 5 figure
Modeling of resistive sheets in finite element solutions
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by a metal-backed cavity loaded with a resistive card
Electromagnetic characterization of conformal antennas
The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations
Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica
Bacteria are assumed to disperse widely via aerosolized transport due to their small size and resilience. The question of microbial endemicity in isolated populations is directly related to the level of airborne exogenous inputs, yet this has proven hard to identify. The ice-free terrestrial ecosystem of Antarctica, a geographically and climatically isolated continent, was used to interrogate microbial bio-aerosols in relation to the surrounding ecology and climate. High-throughput sequencing of bacterial ribosomal RNA (rRNA) genes was combined with analyses of climate patterns during an austral summer. In general terms, the aerosols were dominated by Firmicutes, whereas surrounding soils supported Actinobacteria-dominated communities. The most abundant taxa were also common to aerosols from other continents, suggesting that a distinct bio-aerosol community is widely dispersed. No evidence for significant marine input to bio-aerosols was found at this maritime valley site, instead local influence was largely from nearby volcanic sources. Back trajectory analysis revealed transport of incoming regional air masses across the Antarctic Plateau, and this is envisaged as a strong selective force. It is postulated that local soil microbial dispersal occurs largely via stochastic mobilization of mineral soil particulates
Model-Based Edge Detector for Spectral Imagery Using Sparse Spatiospectral Masks
Two model-based algorithms for edge detection in spectral imagery are developed that specifically target capturing intrinsic features such as isoluminant edges that are characterized by a jump in color but not in intensity. Given prior knowledge of the classes of reflectance or emittance spectra associated with candidate objects in a scene, a small set of spectral-band ratios, which most profoundly identify the edge between each pair of materials, are selected to define a edge signature. The bands that form the edge signature are fed into a spatial mask, producing a sparse joint spatiospectral nonlinear operator. The first algorithm achieves edge detection for every material pair by matching the response of the operator at every pixel with the edge signature for the pair of materials. The second algorithm is a classifier-enhanced extension of the first algorithm that adaptively accentuates distinctive features before applying the spatiospectral operator. Both algorithms are extensively verified using spectral imagery from the airborne hyperspectral imager and from a dots-in-a-well midinfrared imager. In both cases, the multicolor gradient (MCG) and the hyperspectral/spatial detection of edges (HySPADE) edge detectors are used as a benchmark for comparison. The results demonstrate that the proposed algorithms outperform the MCG and HySPADE edge detectors in accuracy, especially when isoluminant edges are present. By requiring only a few bands as input to the spatiospectral operator, the algorithms enable significant levels of data compression in band selection. In the presented examples, the required operations per pixel are reduced by a factor of 71 with respect to those required by the MCG edge detector
Characterisation of thermal and structural behaviour of lipid blends composed of fish oil and milkfat
The blend of fish oil with a high percentage of long chain poly-unsaturated fatty acids, and milkfat with a high percentage of saturated fatty acids, could potentially demonstrate desirable characteristics from both components, such as increased omega-3 fatty acids and melting point, as well as improved crystallization and oxidative stability. In this study, the effect of various milkfat concentrations on thermal properties and crystalline structure of these blends were analysed to understand parameters determining the overall characteristics of the blend. Blends with different ratios of fish oil: milkfat (9:1, 7:3, 5:5, 3:7, 1:9), as well as pure fish oil and pure milkfat, were investigated at different cooling conditions. The crystallization behaviour in all samples shifted to lower temperature ranges, by increasing the cooling rate from 1 to 32 °C/min. However, the changes in cooling rate did not have significant effect on the melting profile of the samples. Whereas changes in milkfat ratio affect both the crystallization and melting behaviour. New crystallization peaks were observed on DSC spectra between the range of −4 to −13 °C in the blends. Moreover, new melting peaks appeared in two ranges of −1 to −8 °C and 8–9 °C, in the blends. The crystallization and melting behaviour of the blends were similar to those of milkfat when >30% milkfat was used. This was further confirmed via XRD where milkfat demonstrated the dominant polymorphic behaviour. Regarding shape of the crystals, fractal dimension analysis showed a similarity between clusters in blends containing 50% milkfat or higher. Increasing the ratio of milkfat led to an increase in fractal dimension which indicates higher mass-spatial distribution of the crystal networks in the blends. The data showed that adding 30% or more milkfat to pure fish oil resulted in blends demonstrating similar characteristics to milkfat, including thermal, structural, and oxidative stability. This shows the potential of blending a high percentage of docosahexaenoic acid in milk fat to improve their overall stability
- …