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Abstract

A formulation is presented for modeling a resistive card in the

context of the finite element method. The appropriate variational

function is derived and for validation purposes results are presented

for the scattering by a metal-backed cavity loaded with a resistive

card.
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1 Introduction

A resistive card is an infinitesimally thin sheet of material which allows par-

tial penetration of the electromagnetic field. Thin dielectric layers and very

thin conductors whose thickness is less than the skin depth are examples of

materials which can be modelled by resistive cards or sheets. Resistive cards

are often used for radar cross section and RF power penetration control and

as a result they have been studied extensively. Such studies have generally

been clone in the context of high frequency [1,2] and integral equation solu-

tions [3,4], but to date the treatment of resistive cards within the context of

the finite element method (FEM) has not been considered. Over the past

few years, FEM has been applied to a variety of electromagnetic applications

and it is thus important to incorporate the modeling of resistive cards in the

FEM. In this paper we propose an FEM formulation which accounts for the

presence of resistive sheets. To validate this formulation, results based on a

physical modeling of the resistive sheet are also presented. In this case, the

resistive sheet is equivalently replaced by a thin dielectric layer. The mod-

eling of such a layer in the usual manner leads to larger and consequently

inefficient linear systems, which is the primary reason for resorting to a math-

ematical modeling of the resistive sheet. Results based on the mathematical

and physical modeling are presented in connection with the scattering by a

metal-backed cavity in a ground plane and these are used to validate the

proposed mathematical model.

2 Formulation

A resistive sheet is characterized by its resistivity R which is measured in

Ohms per square. Mathematically, it satisfies the boundary condition [5

?tx(fixE)=-Rfi × (H +-H-) (1)

where H + denotes the magnetic field above and below the sheet, E is the

electric field and its tangential component is continuous across the sheet, and

/z denotes the unit normal to the sheet pointing in the upward direction (+

side). To a first order, this boundary condition can be used to simulate the



presenceof a thin dielectric layer by setting [4,51

Zo
R=

jko(¢.- 1)l

In this, t is the thickness of the layer, Zo and ko denote the free space intrin-

sic impedance and wave number, respectively, and e. is the relative dielectric

constant of the layer. Alternatively, a resistive sheet may be equivalently re-

placed by a thin dielectric layer having thickness t and a relative permittivity
of

jZo
e_ = 1 kotR (2)

Generally, the accuracy of this simulation increases as the thickness t is

decreased. Typically, t should not exceed one-tenth of the wavelength in the
material.

Let us now consider a finite element solution of the fields within a volume

V subject to a given excitation. The volume consists of some inhomogeneous

dielectric having relative permittivity and permeability er and #r, respec-

tively, and we shall also assume that resistive cards may be embedded within

the dielectric (see Figure 1). In accordance with the finite element method,

the volume is subdivided into M smaller volume elements and in this case

we require that the resistive cards are tangential to the boundary surface

of these elements. A weak solution of the fields within the volume can be

obtained by extremizing the functional

M

F=__F', (3)
¢_--1

,.:
(_( E. (H x ft,)ds (4)+jkoZo

with respect to the electric field P, including that implied in H. In this

expression, V, is the volume of the element which is enclosed by the surface

S, and fi, denotes the outward normal to S,.



Generally, for a dielectric volume not enclosing resistive sheets or other

current sheets, the contributions of the surface integrals in (3)-(4) vanish

everywhere except when S_ coincides with the outer surface So of the volume

V. This is a consequence of field continuity across the elements, but if a

portion of the element's surface coincides with a resistive sheet, then the

surface integral in (4) does not vanish since the magnetic field is discontinuous

as described in (1). Let us for example consider the surface Sr, which borders

the eth and (e + 1)th elements, and is coincident with a resistive sheet of

resistivity R. Then the contribution from this surface to the surface integral

in (4)is

from the eth element and

from the (e + 1)th element with fi_, pointing from the eth to the (e + 1)th

element. Combining these two integrals and employing (1), it follows that

the contribution of the surface S_, to tile surface integral in (4) is

- j,o oj£,. (,,
jL= jkoZo , -_(fir, xE).(fir,×E)ds (,5)

Consequently, the functional F may be rewritten as

e=l

+jkoZo r R (fir x E)- (fir x E)ds

+jkoZo_/soE. (H x ho)ds (6)

in which Sr denotes the surface occupied by the resistive sheet and So is the

outer surface enclosing the volume V. As usual, fi, is the outward normal to

S_ and rio is correspondingly the outward normal to So. If S, borders the
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outer surface of the volume V, then So should be considered to be just over

the exterior side of S, (i.e., So always encloses S,).

Having derived the explicit form of the functional F, we may now expand

the element field using the standard linear shape functions. If the sources

are within V then F should be modified to read

+, o'oli'"_(n. × E). (/t. × E)ds

+jkoZo _soE . (H x ho)ds (7)

where (j,,_t, M,,_t) denote the impressed sources internal to V. Then, upon

setting the first order variation of F to zero, we can obtain a system of

equations for the solution of the interior and boundary electric fields. For a

unique solution of this system we must, however, specify a relation between

the tangential electric and magnetic field which appear in the surface integral

over So. If we assume that the subject volume is that occupied by the metal-

backed cavity recessed in a ground plane, as shown in figure 2, then So reduces

to the aperture area of that cavity. By invoking image theory, the magnetic

field on the aperture can then be expressed as

.:.,.. [(,+ x
where S, denotes the aperture surface, Go(r,r') is the free space scalar

Green's function, r specifies the observation point located on Sa and I =

J:z + YY + _-/. is the unit dyad. Also, H "_c denotes the magnetic field gen-

erated by sources in the free space and H *e! is the corresponding reflected

field when the cavity's aperture is shorted. Substituting (8) into (7) gives

a functional only in terms of the electric field. The system obtained from

this functional will be partly sparse and partly full. In particular the volume



integrals and that over Sr in (7) lead to a sparse submatrix involving the

interior fields of the cavity. However, in view of (8) the last surface integral

of (7) over So (or Sa) renders a full Toeplitz submatrix since the boundary

integral is convolutional. Consequently, by resorting to an iterative solu-

tion such as the conjugate or biconjugate gradient method in conjunction

with the fast Fourier transform, the need to generate the Toeplitz matrix is

eliminated thus maintaining the O(n) storage requirement, characteristic of

finite element solutions. The details pertaining to this implementation are

discussed in [6] - [8]. In the next section we only present some results aimed

at evaluating the accuracy of the proposed resistive sheet model.

3 Numerical Results

Let us consider the metal-backed rectangular cavity illustrated in Figure 2.

The cavity is assumed to be empty (no internal sources) and is illuminated

by a plane wave in the ¢ = 0 plane. For implementing the aforementioned

solution, the cavity is subdivided into rectangular bricks and the results of the

solution are shown in Figure 3. These are radar cross section (RCS) patterns

and refer to a 1)_ deep cavity whose aperture is also l_ x l_. The RCS

pattern in Figure 3(b) applies to the cavity which is loaded with a resistive

sheet of 100f_/rn placed at its aperture, whereas the result in Figure 3(a) is for

the untreated empty cavity. The simulation of the resistive sheet was done

through direct discretization of the first order variation of the functional

F as given in (7) and alternatively by modeling the resistive sheet as a

dielectric layer of thickness )_/20 having the dielectric constant computed

from (2). As shown in Figure 3(b) the results based on the two simulations

are in reasonable agreement and the differences among them is due to the

finite thickness which was necessarily introduced in the physical model of the

resistive sheet. As noted in [9] and [10], the dielectric layer introduces vertical

components of the electric field which are not present in the resistive sheet.

It is certainly of interest to point out that the presence of the resistive sheet

at the aperture surface reduced the RCS of the cavity by 10dB at normal

incidence and by as much as 20dB at grazing incidence.

The second geometry which was considered is a circular metal-backed

cavity again situated in a ground plane. In this case the aperture of the



circular cavity is loadedwith a sheethavingnon-uniform resistivity given by

R(p) = (9)

oo elsewhere on S_

where a denotes the radius of the aperture. Results with and without resistive

loading for a cavity having a = lin. and a depth of 0.25in. are shown in

Figure 4. These RCS patterns were computed at 16GHz and the incident

field was a plane wave polarized along the 0 or ¢ directions. Again, the data

in Figure 4 demonstrate the validity of the proposed mathematical model.

Also, as in the case of the rectangular cavity the presence of the resistive

cards reduces the overall RCS of the cavity and this reduction is primarily

due to the r& _ed field intensity near its perimeter.

4 Conclusions

A formulation was derived for modeling resistive cards within the context of

the finite element method. Essentially, the pertinent variational functional

was supplemented with an additional boundary integral over the surface of

the resistive sheet/card. Results based on the discretization of the functional

were also presented and these were aimed at demonstrating the accuracy of

the derived mathematical model.
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FIGURECAPTIONS

Fig. 1 CrossSectionof a dielectric volume enclosing a resistive card (a) card within the
dielectric (b) card on the surface of the dielectric

Fig. 2 G_ornetry of a cavity-backed aperture in a ground plane.

Fig. 3 Monostatic RCS for a rectangular aperture (1_. x lk) backed by a rectangular cavity

(1_. x 1_. x 1M in the _ plane. (a) Empty cavity without resistive loading (b)

Empty cavity whose aperture is covered with a resistive sheet having a resistivity of

100D./N. (Solid and dashed lines correspond to results based on the mathematical

simuLation; circles and squares refer to results based on the physical modeling of
the resistive sheet)

Fig. 4 Monostatic RCS for a circular aperture (1 inch in diameter) backed by a circular
cavity (1 inch in diameter and 0.25 inches deep) at 16 GHz. (a) Empty cavity. (b)
Empty cavity covered with a resistive sheet whose resistivity is given by equ. (a).
(Solid and dashed lines correspond to results based on the mathematical
simulation; circles and squares refer to results based on the physical modeling of
the resistive sheet)
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Figure 1. Cross section of a dielectric volume enclosing a

resistive card (a) card within the dielectric

(b) card on the surface of the dielectric
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