179 research outputs found

    Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol

    Get PDF
    The interactions between biocontrol fungi and bacteria may play a key role in the natural process of biocontrol, although the molecular mechanisms involved are still largely unknown. Synergism can occur when different agents are applied together, and cell wall degrading enzymes (CWDEs) produced by fungi can increase the efficacy of bacteria. Pseudomonas spp. produce membrane-disrupting lipodepsipeptides (LDPs) syringotoxins (SP) and syringomycins (SR). SR are considered responsible for the antimicrobial activity, and SP for the phytotoxicity. CWDEs of Trichoderma spp. synergistically increased the toxicity Of SP25-A or SRE purified from P. syringae against fungal pathogens. For instance, the fungal enzymes made Botrytis cinerea and other phytopathogenic fungi, normally resistant to SP25-A alone, more susceptible to this antibiotic. Pseudomonas produced CWDEs in culture conditions that allow the synthesis of the LDPs. Purified bacterial enzymes and metabolites were also synergistic against fungal pathogens, although this mixture was less powerful than the combination with the Trichoderma CWDEs. The positive interaction between LDPs and CWDEs may be part of the biocontrol mechanism in some Pseudomonas strains, and co-induction of different antifungal compounds in both biocontrol bacteria and fungi may occur

    ROOT KNOT DISEASE CAUSED BY MELOIDOGYNE INCOGNITA (KOFOID &WHITE, 1919) CHITWOOD, 1949 (NEMATODA, MELOIDOGYNIDAE) ON TOMATO GROWN IN SOIL-LESS CROPS IN ITALY

    Get PDF
    Infestation of Meloidogyne incognita (Kofoid &White, 1919) Chitwood, 1949 on tomato grown in a soil-less system is reported from the Nola area, southern Italy. Morphological observations and measurements of females and second stage juveniles of the nematode conformed to those reported in the description of M. incognita. Advantages and disadvantages of soil-less crops on the spread of the nematode are also discussed

    Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens

    Get PDF
    Strains of Trichoderma spp. produce numerous bioactive secondary metabolites. The in vitro production and antibiotic activities of the major compounds synthesized by Trichoderma harzianum strains T22 and T39 against Leptosphaeria maculans, Phytophthora cinnamomi and Botrytis cinerea were evaluated. Moreover, the eliciting effect of viable or nonviable biomasses of Rhizoctonia solani, Pythium ultimum or B. cinerea on the in vitro production of these metabolites was also investigated. T22azaphilone, 1-hydroxy-3-methyl-anthraquinone, 1,8-dihydroxy-3-methyl-anthraquinone, T39butenolide, harzianolide, harzianopyridone were purified, characterized and used as standards. In antifungal assays, T22azaphilone and harzianopyridone inhibited the growth of the pathogens tested even at low doses (1-10 mu g per plug), while high concentrations of T39butenolide and harzianolide were needed (> 100 mu g per plug) for inhibition. The in vitro accumulation of these metabolites was quantified by LC/MS. T22azaphilone production was not enhanced by the presence of the tested pathogens, despite its antibiotic activity. On the other hand, the anthraquinones, which showed no pathogen inhibition, were stimulated by the presence of P. ultimum. The production of T39butenolide was significantly enhanced by co-cultivation with R. solani or B. cinerea. Similarly, viable and nonviable biomasses of R. solani or B. cinerea increased the accumulation of harzianopyridone. Finally, harzianolide was not detected in any of the interactions examined. The secondary metabolites analysed in this study showed different levels of antibiotic activity. Their production in vitro varied in relation to: (i) the specific compound; (ii) the phytopathogen used for the elicitation; (iii) the viability of the elicitor; and (iv) the balance between elicited biosynthesis and biotransformation rates. The use of cultures of phytopathogens to enhance yields of Trichoderma metabolites could improve the production and application of novel biopesticides and biofertilizers based on the active compounds instead of the living microbe. This could have a significant beneficial impact on the management of diseases in crop plants

    Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests

    Get PDF
    Species of the ecological opportunistic, avirulent fungus, Trichoderma are widely used in agriculture for their ability to protect crops from the attack of pathogenic fungi and for plant growth promotion activity. Recently, it has been shown that they may also have complementary properties that enhance plant defense barriers against insects. However, the use of these fungi is somewhat undermined by their variable level of biocontrol activity, which is influenced by environmental conditions. Understanding the source of this variability is essential for its profitable and wide use in plant protection. Here, we focus on the impact of temperature on Trichoderma afroharzianum T22, Trichoderma atroviride P1, and the defense response induced in tomato by insects. The in vitro development of these two strains was differentially influenced by temperature, and the observed pattern was consistent with temperature-dependent levels of resistance induced by them in tomato plants against the aphid, Macrosiphum euphorbiae, and the noctuid moth, Spodoptera littoralis. Tomato plants treated with T. afroharzianum T22 exhibited enhanced resistance toward both insect pests at 25°C, while T. atroviride P1 proved to be more effective at 20°C. The comparison of plant transcriptomic profiles generated by the two Trichoderma species allowed the identification of specific defense genes involved in the observed response, and a selected group was used to assess, by real-time quantitative reverse transcription PCR (qRT-PCR), the differential gene expression in Trichoderma-treated tomato plants subjected to the two temperature regimens that significantly affected fungal biological performance. These results will help pave the way toward a rational selection of the most suitable Trichoderma isolates for field applications, in order to best face the challenges imposed by local environmental conditions and by extreme climatic shifts due to global warming

    ACTIVITY OF CHESTNUT TANNINS AGAINST THE SOUTHERNROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA

    Get PDF
    Studies on the effects of tannins on plant-parasitic nematodes are few. A new formulation of a hydrolysable tanninextracted from chestnut (SaviotaN®) was tested for efficacy in controlling Meloidogyne incognita. Therefore, in vitro andpot experiments on tomato were performed to investigate the nematicidal activity of tannin aqueous solutions at differentconcentrations on M. incognita. In the in vitro experiment the following concentrations of tannin at 0.30, 0.40, 0.50, 0.75,1.00, 1.25, 1.50 g L−1 were tested for their effect on the nematode. The second-stage juveniles (J2s) immobility increasedwith increasing concentration and exposure time. All tested tannin concentrations were effective to reduce viability fromabout 45 to 70% after 10 days of exposure, in comparison to the treated and untreated controls. The immobile J2s recoveredtheir mobility over time after rinsing and transferring them in water, showing a nematostatic activity of tannins. In the potexperiment, tannins, as aqueous solutions at rates from 0.30 to 1.50 g L−1, were applied to soil at three different applicationtimes (1: only at transplant; 2: at transplant, two weeks after transplant and repeated every seven days; 3: at transplant andtwo weeks later). The activity of tannins was compared to treated and untreated controls. Tested rates mostly repeated wereeffective to control nematode attack in comparison to untreated control. The height of treated plants was not significantlyinfluenced by the different applied rates of tannins, whereas nematode population density and root galling index wereaffected by repeated application times. No visual symptoms of phytotoxicity were detected. The use of SaviotaN®appearspromising for the control of M. incognitain sustainable agriculture of short-term crops and/or when nematode populationdensities are low and as a supplement to other chemical treatments

    Compost and microbial biostimulant applications improve plant growth and soil biological fertility of a grass-based phytostabilization system

    Get PDF
    In this work, a grass-based phytoremediation system integrated with an organic amendment and biostimulants was evaluated for remediating contaminated sites. Plant growth and biological fertility were monitored to assess the efficacy of a vegetative cap used as a safety measure to reduce sanitary and environmental risks of industrially contaminated soils and soil-washing sludges. Both matrices were potentially contaminated with Pb and Zn with an ecological risk index from low to moderate. According to potentially toxic elements (PTEs) bioaccessibility tests, the exposure to the released fine particulate matter may cause serious risks to human beings, in particular to children. The grass mixture was well adapted to both the substrates and a low PTEs mobility was detected, thus, reducing the leaching risk to ground water sources. Compost addition augmented significantly nitrogenase reductase (nifH) and ammonia monooxygenase (amoA) gene expression abundance in both substrates. Furthermore, a positive interaction between compost fertilization and a Trichoderma-based biostimulant inoculation was recorded in sludges resulting in a significant stimulation of nitrogen-fixing and ammonia-oxidizing bacteria. The application of compost and biostimulant increased soil fertility and plant growth. Furthermore, there was a slight reduction in PTE bioaccessibility, thus, improving the efficiency of the phytostabilization, limiting the resuspension and dispersion of the health-risk soil particulate

    Trichoderma and its secondary metabolites improve yield and quality of grapes

    Get PDF
    Trichoderma is one of the most studied and applied fungal biocontrol agents. The benefits of these microorganisms to the plant include: suppression of pathogens, growth promotion, enhanced nutrient availability and induction of resistance. The biological activity is related to the variety of metabolites that they produce. These metabolites have been found to directly inhibit the pathogens, increase disease resistance and enhance plant growth. In this study, we have examined the effect of two Trichoderma strains and their secondary metabolites on Vitis vinifera in terms of induction of disease resistance, plant growth promotion and increase of polyphenols or antioxidant activity in the grapes. Applications of T. harzianum M10 or T. atroviride P1, as well as their respective major secondary metabolites, harzianic acid (HA) and 6-pentyl-a-pyrone (6PP), have been conducted in greenhouse by foliar spray or drenching. The treatments suppressed the development of powdery mildew caused by Uncinula necator. In a field experiment, a spore suspension of T. harzianum strain T22 or a 6PP solution was applied until fruit harvest. The results indicated that both T. harzianum T22 and 6PP are able to improve crop yield and increase the total amount of polyphenols and antioxidant activity in the grapes. The effects of the isolated natural compounds were comparable with those obtained by using the living fungus

    Trichoderma-based products and their widespread use in agriculture

    Get PDF
    Governing bodies throughout the world, particularly in Europe, are now implementing legislative mandates with the objective of decreasing dependence on pesticides in agriculture to increase consumer and environmental safety. In order to reduce the risks associated with pesticide applications and reduce dependency on their use, Directives will promote low pesticide-input by implementing integrated pest management (IPM), and provide the means to establish the necessary conditions and measures to employ these practices, as well as to ensure security of commercial products. One approach includes the use of biological control agents and their products as alternatives to synthetic agro-chemicals. Trichoderma spp. are widely studied fungi and are among the most commonly used microbial biological control agents (MBCAs) in agriculture. They are presently marketed as bio-pesticides, biofertilizers, growth enhancers and stimulants of natural resistance. The efficacy of this fungus can be attributed to their ability to protect plants, enhance vegetative growth and contain pathogen populations under numerous agricultural conditions, as well as to act as soil amendments/inoculants for improvement of nutrient ability, decomposition and biodegradation. The living fungal spores (active substance) are incorporated in various formulations, both traditional and innovative, for applications as foliar sprays, pre-planting applications to seed or propagation material, post-pruning treatments, incorporation in the soil during seeding or transplant, watering by irrigation or applied as a root drench or dip. Trichoderma-based preparations are marketed worldwide and used for crop protection of various plant pathogens or increase the plant growth and productivity in diverse cultivated environments such as fields, greenhouses, nurseries; in the production of a variety of horticultural, fruits, trees and ornamental crops. A survey was conducted of Trichoderma-containing products found on the international market to obtain an overall perspective of the: 1) geographical distribution, 2) product composition and identity of Trichoderma species selected, 3) contents combined with Trichoderma in the products - other microbial species or substances in the mix, 4) number of products available globally and geographically, 5) number of products registered or having use specifications, 6) product formulations and applications, 7) manufacturer claims - target use, target pests, product type and effects of applications. The largest distribution of Trichoderma bioproducts is found in Asia, succeeded by Europe, South- Central America and North America. The majority of the labels indicated fungicidal properties, but only 38% of the marketed merchandise are registered. Ten Trichoderma species are specifically indicated, but many labels indicate a generic Trichoderma sp. or spp. mix in the list of ingredients. The most common formulation is a wettable powder, followed by granules. Generally, Trichoderma are applied to the seed or propagation material at the time of planting, then the secondary use is during plant development. On the whole, the target use is for the control of soilborne fungal pathogens such as Rhizoctonia, Pythium and Sclerotinia, and a few foliar pathogens such as Botrytis and Alternaria; whereas the minor use indication is for plant growth promotion. The use of Trichoderma-based biological products will have an important role in agricultural production of the future, in light of changing worldwide perspectives by consumers and governing bodies

    Temperature Differentially Influences the Capacity of Trichoderma Species to Induce Plant Defense Responses in Tomato Against Insect Pests

    Get PDF
    Species of the ecological opportunistic, avirulent fungus, Trichoderma are widely used in agriculture for their ability to protect crops from the attack of pathogenic fungi and for plant growth promotion activity. Recently, it has been shown that they may also have complementary properties that enhance plant defense barriers against insects. However, the use of these fungi is somewhat undermined by their variable level of biocontrol activity, which is influenced by environmental conditions. Understanding the source of this variability is essential for its profitable and wide use in plant protection. Here, we focus on the impact of temperature on Trichoderma afroharzianum T22, Trichoderma atroviride P1, and the defense response induced in tomato by insects. The in vitro development of these two strains was differentially influenced by temperature, and the observed pattern was consistent with temperature-dependent levels of resistance induced by them in tomato plants against the aphid, Macrosiphum euphorbiae, and the noctuid moth, Spodoptera littoralis. Tomato plants treated with T. afroharzianum T22 exhibited enhanced resistance toward both insect pests at 25°C, while T. atroviride P1 proved to be more effective at 20°C. The comparison of plant transcriptomic profiles generated by the two Trichoderma species allowed the identification of specific defense genes involved in the observed response, and a selected group was used to assess, by real-time quantitative reverse transcription PCR (qRT-PCR), the differential gene expression in Trichoderma-treated tomato plants subjected to the two temperature regimens that significantly affected fungal biological performance. These results will help pave the way toward a rational selection of the most suitable Trichoderma isolates for field applications, in order to best face the challenges imposed by local environmental conditions and by extreme climatic shifts due to global warming
    • …
    corecore