54 research outputs found

    CTX-M-14 and CTX-M-15 enzymes are the dominant type of extended-spectrum β-lactamase in clinical isolates of Escherichia coli from Korea

    Get PDF
    This study was performed to assess the prevalence and genotypes of plasmid-borne extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases in Escherichia coli in Korea. A total of 576 isolates of E. coli was collected from 12 Korean hospitals during May and July 2007. A phenotypic confirmatory test detected ESBLs in 82 (14.2 %) of the 576 E. coli isolates. The most common types of ESBLs identified were CTX-M-14 (n=32) and CTX-M-15 (n=27). The prevalence and diversity of the CTX-M mutants, including CTX-M-15, CTX-M-27 and CTX-M-57, with significant hydrolytic activity against ceftazidime were increased. PCR experiments detected genes encoding plasmid-borne AmpC β-lactamases in 15/56 cefoxitin-intermediate or cefoxitin-resistant isolates, and the most common type of AmpC β-lactamase identified was DHA-1 (n=10). These data suggest that the incidence of ESBLs in E. coli has increased as a result of the dissemination of CTX-M enzymes in Korea. In addition, CTX-M-22, CTX-M-27 and CTX-M-57 have appeared in Korea

    Evaluation of Verigene Blood Culture Test Systems for Rapid Identification of Positive Blood Cultures

    Get PDF
    The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum -lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures

    Immune-checkpoint proteins, cytokines, and microbiome impact on patients with cervical insufficiency and preterm birth

    Get PDF
    BackgroundMicroenvironmental factors, including microbe-induced inflammation and immune-checkpoint proteins that modulate immune cells have been associated with both cervical insufficiency and preterm delivery. These factors are incompletely understood. This study aimed to explore and compare interactions among microbiome and inflammatory factors, such as cytokines and immune-checkpoint proteins, in patients with cervical insufficiency and preterm birth. In particular, factors related to predicting preterm birth were identified and the performance of the combination of these factors was evaluated.MethodsA total of 220 swab samples from 110 pregnant women, prospectively recruited at the High-Risk Maternal Neonatal Intensive Care Center, were collected between February 2020 and March 2021. This study included 63 patients with cervical insufficiency receiving cerclage and 47 control participants. Endo- and exocervical swabs and fluids were collected simultaneously. Shotgun metagenomic sequencing for the microbiome and the measurement of 34 immune-checkpoint proteins and inflammatory cytokines were performed.ResultsFirst, we demonstrated that immune-checkpoint proteins, the key immune-regulatory molecules, could be measured in endocervical and exocervical samples. Secondly, we identified significantly different microenvironments in cervical insufficiency and preterm birth, with precise cervical locations, to provide information about practically useful cervical locations in clinical settings. Finally, the presence of Moraxella osloensis (odds ratio = 14.785; P = 0.037) and chemokine CC motif ligand 2 levels higher than 73 pg/mL (odds ratio = 40.049; P = 0.005) in endocervical samples were associated with preterm birth. Combining M. osloensis and chemokine CC motif ligand 2 yielded excellent performance for predicting preterm birth (area under the receiver operating characteristic curve = 0.846, 95% confidence interval = 0.733-0.925).ConclusionMultiple relationships between microbiomes, immune-checkpoint proteins, and inflammatory cytokines in the cervical microenvironment were identified. We focus on these factors to aid in the comprehensive understanding and therapeutic modulation of local microbial and immunologic compositions for the management of cervical insufficiency and preterm birth

    Currently Applied Molecular Assays for Identifying ESR1 Mutations in Patients with Advanced Breast Cancer

    No full text
    Approximately 70% of breast cancers, the leading cause of cancer-related mortality worldwide, are positive for the estrogen receptor (ER). Treatment of patients with luminal subtypes is mainly based on endocrine therapy. However, ER positivity is reduced and ESR1 mutations play an important role in resistance to endocrine therapy, leading to advanced breast cancer. Various methodologies for the detection of ESR1 mutations have been developed, and the most commonly used method is next-generation sequencing (NGS)-based assays (50.0%) followed by droplet digital PCR (ddPCR) (45.5%). Regarding the sample type, tissue (50.0%) was more frequently used than plasma (27.3%). However, plasma (46.2%) became the most used method in 2016–2019, in contrast to 2012–2015 (22.2%). In 2016–2019, ddPCR (61.5%), rather than NGS (30.8%), became a more popular method than it was in 2012–2015. The easy accessibility, non-invasiveness, and demonstrated usefulness with high sensitivity of ddPCR using plasma have changed the trends. When using these assays, there should be a comprehensive understanding of the principles, advantages, vulnerability, and precautions for interpretation. In the future, advanced NGS platforms and modified ddPCR will benefit patients by facilitating treatment decisions efficiently based on information regarding ESR1 mutations

    Currently Used Laboratory Methodologies for Assays Detecting PD-1, PD-L1, PD-L2 and Soluble PD-L1 in Patients with Metastatic Breast Cancer

    No full text
    Approximately 20% of breast cancer (BC) patients suffer from distant metastasis. The incidence and prevalence rates of metastatic BC have increased annually. Immune checkpoint inhibitors are an emerging area of treatment, especially for metastatic patients with poor outcomes. Several antibody drugs have been developed and approved for companion testing of the programmed death protine-1 (PD-1) axis. We reviewed currently used laboratory methodologies for assays determining PD-1 axis to provide a comprehensive understanding of principles, advantages, and drawbacks involved in their implementation. The most commonly used method is immunohistochemistry (92.9%) for PD-L1 expression using tissue samples (96.4%). The commonly used anti-PD-L1 antibody clone were commercially available 22C3 (30.8%), SP142 (19.2%), SP263 (15.4%), and E1L3N (11.5%). Enzyme-linked immunosorbent assay and electrochemiluminescent immunoassay that target soluble PD-ligand (L)1 were developed and popularized in 2019–2021, in contrast to 2016–2018. Easy accessibility and non-invasiveness due to the use of blood samples, quantitative outputs, and relatively rapid turnaround times make them more preferable. Regarding scoring methods, a combination of tumor and immune cells (45.5% in 2016–2018 to 57.1% in 2019–2021) rather than each cell alone became more popular. Information about antibody clones, platforms, scoring methods, and related companion drugs is recommended for reporting PD-L1 expression

    Molecular Epidemiology of Human Norovirus in Korea in 2013

    No full text
    Norovirus is a major cause of acute gastroenteritis. The molecular epidemiology of norovirus exhibits temporal and geographical fluctuations, and new variants of the GII.4 genotype emerge every 2-3 years to cause global epidemics of acute gastroenteritis. We investigated GI and GII genotypes of human norovirus strains isolated from patients with acute gastroenteritis in Korea in 2013. Norovirus antigen test was performed on 2,980 fecal specimens from January to December 2013. RNA was extracted from norovirus antigen-positive fecal suspensions, and the norovirus capsid (VP1) and polymerase (RdRp) genes were characterized by RT-PCR and sequencing. Of the 230 genotyped strains, GII.4 (77.3%) was the most frequently observed capsid genotype, followed by GII.3 (6.1%) and GII.13 (3.9%). A norovirus GII.4 variant, GII.Pe/GII.4 Sydney 2012, was the most frequently found polymerase/capsid genotype (65.7%), followed by GII.P17/GII.17 (2.1%) and GII.P21/GII.3 (2.1%). Phylogenetic, similarity, and capsid epitope analyses of GII.Pe/GII.4 Sydney 2012 strains were performed. We concluded that the norovirus GII.4 variant, GII.Pe/GII.4 Sydney 2012, was the main cause of norovirus-related gastroenteritis in Korea in 2013

    Features of Invariant Extended Kalman Filter Applied to Unmanned Aerial Vehicle Navigation

    No full text
    This research used an invariant extended Kalman filter (IEKF) for the navigation of an unmanned aerial vehicle (UAV), and compared the properties and performance of this IEKF with those of an open-source navigation method based on an extended Kalman filter (EKF). The IEKF is a fairly new variant of the EKF, and its properties have been verified theoretically and through simulations and experiments. This study investigated its performance using a practical implementation and examined its distinctive features compared to the previous EKF-based approach. The test used two different types of UAVs: rotary wing and fixed wing. The method uses sensor measurements of the location and velocity from a GPS receiver; the acceleration, angular rate, and magnetic field from a microelectromechanical system-attitude heading reference system (MEMS-AHRS); and the altitude from a barometric sensor. Through flight tests, the estimated state variables and internal parameters such as the Kalman gain, state error covariance, and measurement innovation for the IEKF method and EKF-based method were compared. The estimated states and internal parameters showed that the IEKF method was more stable and convergent than the EKF-based method, although the estimated locations, velocities, and altitudes of the two methods were comparable

    Broth Microdilution Method To Detect Extended-Spectrum β-Lactamases and AmpC β-Lactamases in Enterobacteriaceae Isolates by Use of Clavulanic Acid and Boronic Acid as Inhibitors ▿

    No full text
    This study was designed to evaluate the performance of the broth microdilution (BMD) method to detect production of extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases in Enterobacteriaceae by using clavulanic acid (CA) and boronic acid (BA) as ESBL and AmpC β-lactamase inhibitors, respectively. A total of 100 clinical isolates of Enterobacteriaceae were analyzed. Mueller-Hinton broth containing serial twofold dilutions of cefotaxime (CTX), ceftazidime (CAZ), aztreonam (ATM), or cefepime (FEP) with or without either or both CA and BA was prepared. An eightfold or greater decrease in the MIC of CTX, CAZ, ATM, or FEP in the presence of CA and BA was considered a positive result for ESBL and plasmid-mediated AmpC β-lactamase (PABL), respectively. In tests with CA, expanded-spectrum β-lactams containing BA (CTX-BA, CAZ-BA, ATM-BA, and FEP-BA) showed higher positive rates in detecting ESBL producers than those without BA. The combination of CTX- and CAZ-based BMD tests with CA and BA showed sensitivity and specificity of 100% for the detection of ESBLs and PABLs. The BMD testing could be applicable for routine use in commercially available semiautomated systems for the detection of ESBLs and PABLs in Enterobacteriaceae

    Emergence of multidrug-resistant Providencia rettgeri isolates co-producing NDM-1 carbapenemase and PER-1 extended-spectrum β-lactamase causing a first outbreak in Korea

    No full text
    Abstract Background Nosocomial outbreak due to carbapenem-resistant Enterobacteriaceae has become serious challenge to patient treatment and infection control. We describe an outbreak due to a multidrug-resistant Providencia rettgeri from January 2016 to January 2017 at a University Hospital in Seoul, Korea. Methods A total of eight non-duplicate P. rettgeri isolates were discovered from urine samples from eight patients having a urinary catheter and admitted in a surgical intensive care unit. The β-lactamase genes were identified using polymerase chain reaction and direct sequencing, and strain typing was done with pulsed-field gel electrophoresis (PFGE). Results All isolates showed high-level resistance to extended-spectrum cephalosporins, aztreonam, meropenem, ertapenem, ciprofloxacin, and amikacin. They harbored the bla NDM-1 carbapenemase and the bla PER-1 type extended-spectrum β-lactamases genes. PFGE revealed that all isolates from eight patients were closely related strains. Conclusions The 13-month outbreak ended following reinforcement of infection control measures, including contact isolation precautions and environmental disinfection. This is the first report of an outbreak of a P. rettgeri clinical isolates co-producing NDM-1 and PER-1 β-lactamase
    corecore